
A
rticle

Inferring Very Recent Population Growth Rate from
Population-Scale Sequencing Data: Using a Large-Sample
Coalescent Estimator
Hua Chen,*,1 Jody Hey2 and Kun Chen3

1Center for Computational Genomics, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, China
2Center for Computational Genetics and Genomics, Temple University
3Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA

*Corresponding author: E-mail: chenh@big.ac.cn.

Associate editor: Matthew Hahn

Abstract

Large-sample or population-level sequencing data provide unprecedented opportunities for inferring detailed population
histories, especially recent demographic histories. On the other hand, it challenges most existing population genetic
methods: Simulation-based approaches require intensive computation, and analytical approaches are often numerically
intractable when the sample size is large. We propose a computationally efficient method for simultaneous estimation of
population size, the rate, and onset time of population growth in the very recent history, using the pattern of the total
number of segregating sites as a function of sample size. Coalescent simulation shows that it can accurately and efficiently
estimate the parameters of recent population growth from large-scale data. This approach has the flexibility to model
population history with multiple growth stages or other epochs, and it is robust when the sample size is very large or at
the population scale, for which the Kingman’s coalescent assumption is not valid. This approach is applied to recently
published data and estimates the recent population growth rate in the European population to be 1.49% with the onset
time 7.26 ka, and the rate in the African population to be 0.735% with the onset time 10.01 ka.
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Introduction
Traditional population genetic inference methods were de-
veloped when large-scale genomic polymorphism data were
scarce. These methods typically work for a small sample (e.g.,
less than 100 haplotypes) and focus more on parameter in-
ference of relatively ancient events. Population genetic studies
that are based on allele frequency spectrum (AFS) or linkage
disequilibrium at genomic level in a small or moderate sample
have reported reasonably tight confidence intervals for pa-
rameters of relatively ancient events within the time range of
20 ky–3 My (Li and Durbin 2011; see also Schaffner et al. 2005;
Gutenkunst et al. 2009; Gravel et al. 2011; Lukić and Hey
2012). In contrast, the inference of very recent demographic
events relies heavily on observing mutations that occurred
very recently, which are rare and only detectable in large
samples.

With the reduction of sequencing cost, whole-genome
sequence data of a large number of individuals that account
for a significant portion of entire population are becoming
common, especially in disease studies (Altshuler et al. 2010;
Coventry et al. 2010; Nelson et al. 2012; Tennessen et al. 2012;
Fu et al. 2013). Large-scale genetic polymorphism data en-
courage the exploration of fine-scale demographic events
that happened in recent history. Inferring the recent demo-
graphic history is of great interests in both population genetic
studies and disease studies, as recent demographic history has
a significant effect on shaping the genetic variation in modern

human populations, and understanding the interaction be-
tween demographic and genetic factors helps the design of
studies on inherited diseases with different underlying genetic
architecture (Gravel et al. 2011). In a recent study of two
candidate gene regions, more than 13,000 individuals were
sequenced (Coventry et al. 2010). The authors demonstrated
that single nucleotide polymorphisms (SNPs) discovered in
such a large sample were consistent with a very recent and
rapid population growth model. Gravel et al. (2011) investi-
gated the sequencing data in the pilot phase of the Thousand
Genomes Project and found an excessive number of rare and
population-specific mutants with increased sampling of indi-
viduals. Nelson et al. (2012) analyzed exome sequencing data
from 202 genes in 14,000 individuals, and Tennessen et al.
(2012) analyzed 15,585 genes in 2,440 individuals with
European and African ancestry. Both studies reported similar
findings.

A useful piece of information that can be used to infer very
recent population size and growth rate is the total number of
segregating sites as a function of sample size (TNSFS). The
TNS is expected to increase with sample size, and the dynam-
ics of TNSFS trajectory provides information for parameter
inference, as was first proposed by Coventry et al. (2010). They
fit an exponential population growth model to the TNSFS
trajectory and AFSs of two genes, and estimated the growth
rate in the European population to be 0.094. Nelson et al.
(2012) did similar analysis with their data and estimated the

� The Author 2015. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution. All rights reserved. For permissions, please
e-mail: journals.permissions@oup.com

2996 Mol. Biol. Evol. 32(11):2996–3011 doi:10.1093/molbev/msv158 Advance Access publication July 16, 2015

 at T
em

ple U
niversity on O

ctober 27, 2015
http://m

be.oxfordjournals.org/
D

ow
nloaded from

 

http://mbe.oxfordjournals.org/


recent growth rate of Europeans to be 0.017. To infer recent
population size and growth rate using TNSFS, Coventry et al.
(2010) and Nelson et al. (2012) used forward and coalescent
simulations, respectively, to generate random samples for a
range of population sizes and growth rates, and estimated the
parameters of interest from the simulated data that were
compatible with the TNSFS or AFS observed from the real
data. Both of their approaches require intensive simulations
to obtain accurate and reliable estimates, and the computa-
tion becomes extremely time consuming when the sample
size is large.

To gain computational efficiency, a method matching
the observed TNSFS to the theoretical prediction in ana-
lytical form will be preferable to those based on simula-
tion. However, when sample size n is large, direct
application of existing analytical formula for TNS faces
three major challenges. First, the existing formulas have
numerical issues for large n. For example, the terms of the
alternating-sum series in the exact formula of AFS are
exploding when n 4 100 (Polanski and Kimmel 2003).
Second, the existing formulas are for the simple exponen-
tial growth model, and it may be nontrivial to extend it to
more complex demographic models, such as, a multiple-
stage exponential growth model. Third, when a large pro-
portion of the entire population is sampled, one of the
assumptions in Kingman’s coalescent, which the sample
size is far less than the population size (n� N), is violated,
so that multiple lineages can coalesce in a single genera-
tion during the exact coalescent process. In this case, the
Kingman’s coalescent may have serious deviation from
the exact coalescent process under the Wright–Fisher
model, and the validity of the conventional inference
methods based on the Kingman’s coalescent needs to
be assessed for large samples. For the above reasons, sim-
ulations, especially population-level forward simulations,
were often adopted to generate the exact coalescent pro-
cess for large samples (Coventry et al. 2010; Nelson et al.
2012).

New Approaches
The method we propose is based on the pattern of the
TNSFS. To set up the method, we derive the analytical for-
mula for the expected TNS for populations underwent one, or
multiple growth stages. We fit the expected TNSFS to the
observed TNSFS trajectory by nonlinear least squares (NLS)
techniques, to make inference on the demographic parameters.

Being different from Coventry et al. (2010) and Nelson et al.
(2012), the formula for TNS is analytical and in simple form,
which guarantees computational efficiency. The formula is
derived based on asymptotic theory of coalescent distribu-
tions, and does not suffer from the numerical issues caused by
large sample size (Chen H and Chen K 2013). The NLS fitting
method can be implemented promptly. We use simulation to
demonstrate the accuracy and reliability of the proposed
method for a wide range of parameter values. Another
reason we choose the TNSFS is because of its robustness
under the violation of the Kingman’s coalescent assumption,
when the sample size is at the population scale and is a large

portion of the population. Through simulation studies, it is
demonstrated that for a wide range of sample size TNSFS has
less deviation from Kingman’s theories than the AFS, suggest-
ing the proposed method to be a very useful solution for
population level sequencing data. The article is closed by
the application of our proposed method to two recently
published data.

A Simple Exponential Growth Model
To set up the method, we first show the exact formula of the
expected TNS for a simple exponential growth model, which
includes two parameters: The contemporary population size
N and the exponential growth rate r, and then derive the
asymptotic expectation of the TNS under the simple expo-
nential growth model for large n.

Exact Formula for the Total Number of
Segregating Sites

Watterson’s �W, as a classic measure of genetic diversity,
is related to the TNS of a sample in a stationary population by:

ESW ¼ �W �
Xn�1

i¼1

1

i
; ð1Þ

where ESW is the expected TNS that can be identified
from a sample of n haplotypes (Watterson 1975).
Watterson’s �W estimated from equation (1) can be
used as an unbiased estimator of the scaled mutation
rate 2N� in populations with constant size: If mutations
are assumed to follow an infinitely many-sites model and
occur along branches of the gene genealogy following a
Poisson process, the expected TNS of a sample can be
estimated by the product of the mutation rate, �, and
the expected total branch length (ETBL) of the gene ge-
nealogy, which is 2N

Pn�1
i¼1

1
i for a haploid population of

constant size N (Hudson 1990; Fu 1995). For a population
at nonequilibrium, or a population undergoing expansion
or contraction, �W can still be estimated from equation
(1), but it is no longer an unbiased estimator of the scaled
mutation rate, as 2N

Pn�1
i¼1

1
i is not an unbiased estimator

of the ETBL. As illustrated in figure 2 of Coventry et al.
(2010), the extrapolation of ESW by plugging Watterson’s
�W into equation (1) for larger n predicted far less segre-
gating sites than what can be actually observed in larger
samples. This was explained in Coventry et al. (2010) by
the rapid population growth in recent human history. If
we can explicitly derive the ETBL of gene genealogies
under any demographic model, an analog of ESW in a
nonequilibrium population can be written as:

ES ¼ � � ETBL ¼ � �
Xn

m¼2

mEWm; ð2Þ

where EWm denotes the expected intercoalescence time
during which there are m lineages in the genealogy.

The exact marginal distribution and expectation of in-
tercoalescence times in a population with temporally
varying size were derived by Polanski et al. (2003) using
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the method of integral transform. In Appendix A, we show
that EWm can be obtained with a simple approach, and in
specific, for a population under the simple exponential
growth model:

EWm ¼
Xn

i¼m

An;m
i e

iði�1Þ
2Nr

1

r
Eið�

iði� 1Þ

2Nr
Þ; ð3Þ

where Ei ð�Þ stands for the exponential integral, and An;m
i is

the coefficient of the alternating hypergeometric series
(eq. A2).

The estimation of EWm using equation (3) for large-
sample genealogies is not trivial, and the value of individual
term in the hypergeometric series explodes with the increase
of sample size n, which limits its practical application to small
samples (e.g., n< 100). But the evaluation of ETBL, as pointed
out by Polanski and Kimmel (2003), can be simplified by
interchange of the double summation (see eq. 5), so that
avoid the calculation of coefficient terms (An;m

i ) with poten-
tial memory overflow for large n. Then, the resulting equation
can be applied to quite large samples:

ES ¼
Xn

m¼2

kWm

¼
Xn

m¼2

Xn

i¼m

An;m
i e

iði� 1Þ

2Nr
1

r
Ei �

iði� 1Þ

2Nr

� � ð4Þ

¼ �
Xn

i¼2

1

r
e

iði�1Þ
2Nr Ei �

2ið2i� 1Þ

2Nr

� �
Vn

i ; ð5Þ

with Vn
i ¼ ð2i� 1Þ n!ðn�1Þ!

ðnþi�1Þ!ðn�iÞ! ½1þ ð�1Þi�. In figure 1, the
expected TNS based on equation (5) was plotted as a func-
tion of the sample size for different growth rates,
r ¼ 0:001; 0:002; 0:005; 0:01; and 0.02, with the mutation
rate � ¼ 1� 10�8 per site per generation for a 100-kb
region.

Asymptotic Formula of TNS for Large-Sample
Genealogies

One approach to avoid numerical instability in the exact
formula is to approximate the exact expectation of TNS by
the asymptotic one. The asymptotic expectation of TBL can
be derived as follows:

ETBLasy ¼ E

Z T1

0

EAnðtÞ dt j T1

� �

&ET1

Z T1

0

n

ð1� n
2N0rÞ þ

n
2N0r ert

dt

" #

&ET1

2nN0log½ð1� e�rT1Þ n
2N0r þ e�rT1 �

n� 2N0r

" #

&ET1

2nN0logðn=2N0rÞ

n� 2N0r

� �

¼
2nN0logðn=2N0rÞ

n� 2N0r
;

ð6Þ

where Ti is the coalescence time when i + 1 lineages coalesce
into i lineages, and AnðtÞ is the number of ancestral lineages of
the contemporary n haplotypes at time t. The approximation
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FIG. 1. The expected TNS (ES) as a function of haploid sample size (n). The points represent the exact expectation given by equation (5), and the lines
represent asymptotic approximation (eq. 7). Different types of lines and points represent different population growth rates:
r ¼ 0:001; 0:002; 0:005; 0:01; and 0:02. The population size is N0 ¼ 2� 106, the mutation rate is chosen to be 1� 10�8 per site per generation,
and the whole region spans 100 kb.
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in the second line holds as the asymptotic expectation of
AnðtÞ for the exponential growth model is shown to be

n
ð1� n

2N0rÞþ
n

2N0re
rt in Chen H and Chen K (2013), and the fourth

line holds as rT1 is quite large so that e�rT1 is ignorable.
Consequently, we have

ES ¼ � � ETBLasy ¼
2nN0�logðn=2N0rÞ

n� 2N0r
: ð7Þ

The above equation can be used to define an analog of
Watterson’s diversity measure for populations under simple
exponential growth:

�g � 2N0� ¼
ES

nlogðn=2N0rÞ
n�2N0r

: ð8Þ

We can now describe the expected TNS as a function
of the sample size for exponentially growing populations.
In figure 1, the expected TNSs given by equation (7) for
different growth rates were plotted together with the exact ex-
pectation given by equation (5). The asymptotic expecta-
tion of the TNS approximates the exact expectation very
well, and works for the sample sizes that have been tested
here, ranging from 20 to 8,000. Compared with the exact
equation, the asymptotic equation is in simpler form, its com-
putation is very efficient, and evaluating the formula does not
require handling numerical issues even for ultra-large sample
sizes.

Two-Stage Exponential Growth Model
The two-stage exponential growth (TEG) model, which as-
sumes a stage of constant population size followed by a stage
of exponential growth, was more commonly used in the pop-
ulation genetic inference (Adams and Hudson 2004; Chen
et al. 2007; Evans et al. 2007; Coventry et al. 2010; Chen
2013). The TEG model has three parameters: The onset
time of population growth �, the exponential growth rate r,
and the contemporary population size N0. The ancestral pop-
ulation size at time �, Na, can also be treated as a free param-
eter. In such a case, a jump in the population size at time � is
allowed. The two-stage model for population size can be
written as:

NðtÞ ¼
N0e�rt; t � �

Na; t 4 �:
:

(
ð9Þ

In the derivation of the asymptotic properties of coalescence
times and number of ancestral lineages, we often use a scaling
function of time t, gðtÞ ¼

R t

0
1

NðuÞ du (Griffiths and Tavar�e
1994, 1998). Specifically for the exponential growth stage
with rate r, we have gðtÞ ¼ ðert � 1Þ=ðN0rÞ. The time-scaling
function g(t) is important for deriving the ETBL for different
population growth models, as it is the essential component in
the asymptotic distribution of AnðtÞ. It was shown that (Chen
H and Chen K 2013),

EAnðtÞ ¼ ut&
n

1þ n
2 gðtÞ

;

and

VarðAnðtÞÞ ¼ �
2
t&

nð1� ð1þ n
2 gðtÞÞ�3

Þ

3ð1þ n
2 gðtÞÞ

:

The TBL for the TEG model can be written as the sum of
two parts: The TBL in the growth phase (TBLgðnÞ) and the
TBL in the constant phase (TBLaðnÞ), or
ETBLðnÞ ¼ ETBLaðnÞ þ ETBLgðnÞ. With more details
shown in Appendix B, we have

EðTBLgðnÞÞ ¼

Z �

0

EAnðtÞdt

&�
2nN0log½ð1� e�r�Þ n

2N0r þ e�r��

2N0r � n
;

ð10Þ

and ETBLaðnÞ can be obtained by taking expectation of
EðTBLaðnÞ jAnð�Þ ¼ mÞ with respect to m, where Anð�Þ is
the number of ancestral lineages at time �:

EðTBLaðnÞÞ ¼ E EðTBLaðnÞ jAnð�Þ ¼ mÞð Þ

¼ 2NaE

Xm�1

i¼1

1

i

 !
&2NaEðlogðmÞ þ �Þ

&2Na logðu�Þ þ � �
�2
�

2u2
�

Þ

� �

&2Na log
� n

1þ n
2 gð�Þ

�
þ �

� �
;

ð11Þ

with � ¼ 0:57721566 being the Euler constant; and u� and ��
being the mean and standard deviation of Anð�Þ, respectively.
The approximation in the second line of equation (11) is
accurate when m is large (Watterson 1975). The remaining
term

�2
�

2u2
�

in the third line can be ignored as �2
� is relatively very

small when compared with u� (Chen H and Chen K 2013).
Combining the two parts of ETBL, we have

EðTBLðnÞÞ ¼ EðTBLgðnÞÞ þ EðTBLaðnÞÞ

¼ �
2nN0log½ð1� e�r�Þ n

2N0r þ e�r�Þ�

2N0r � n

þ 2Na log
� n

1þ n
2 gð�Þ

�
þ �

� �
:

ð12Þ

The expected TNS can then be estimated by taking the
product of ETBL and mutation rate �. In figure 2, we
presented the theoretical results based on equation (12)
for different growth rates: r ¼ 0:001; 0:003; 0:005;
0:01; and 0:02, as well as coalescent simulated ES. The the-
oretical result fits the simulation very well for a wide range of
growth rates and sample sizes.

Extension to Multiple Stages
More complicated multistage growth models were also pro-
posed. For example, Keinan and Clark (2012) proposed a
multiepoch exponential growth model, in which one epoch
of moderate exponential growth is followed by an explosive
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growth. If we make a little modification of Keinan and Clark’s
model, a three-stage exponential growth model can be writ-
ten as:

NðtÞ ¼

N0e�r1t; t � �1

N0e�r1�1�r2ðt��1Þ; �1 � t � �2

Na; t 4 �2:

8><
>: ð13Þ

The time-scaling function g(t) can be achieved from the
above population growth model:

gðtÞ ¼

1

N0r1
ðer1t � 1Þ; t � �1;

er1�1

N0r2
ðer2ðt��1Þ � 1Þ þ

1

N0r1
ðer1�1 � 1Þ; �1 � t � �2:

8>><
>>:

ð14Þ

A

B

FIG. 2. The theoretical prediction, represented by lines, and simulated results, represented by points, of TNSFS in different parameter settings under a
TEG model. (A) The TNSFS under a two-stage model with the initial time of growth phase � = 500 generations and the contemporary population size
N0 ¼ 2� 106. The different curves correspond to theoretical predictions for different growth rates: r ¼ 0:001; 0:003; 0:005; and 0:01. The sample
sizes of the simulated data are set to be n ¼ 20; 50; 100; 200; 300; 400; 600; 800; 1; 000; 2; 000; 3; 000; 4; 000, 5,000, 6,000, 7,000, and 8,000. (B) The
TNSFS under a two-stage model with the initial time of growth phase � = 50 generations and the contemporary population size N0 ¼ 2� 106.
The growth rates are chosen to be r ¼ 0:003; 0:005; 0:01; and 0:02. The other parameters are set to be the same as (A).
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Using g(t), the ETBL for the two growth stages can be
similarly obtained as in previous sections (eq. 15, see
Appendix C for more details).

ETBL9 ¼
�2nN0

2N0r1 � n
log ð1� e�r1�1Þ

n

2N0r1
þ e�r1�1

� �

�
2nN0r1

ner1�1ðr2 � r1Þ � nr2 þ 2N0r1r2

�flog½r2ð2nN0r1 � nÞ þ nr1er1�1�r2�1þr2�2

þnðr2 � r1Þe
r1�1 � � log½r2ðnðe

r1�1 � 1Þ þ 2N0r1Þ�

þr2�1 � r2�2g:

ð15Þ

Gazave et al. (2014) proposed a more complex model for
the European demography, which includes a first stage of
exponential growth, and then followed by five durations
with different population sizes. The piecewise function of
the population size is:

NðtÞ ¼
N1e�rt; t � �1;

Nk; �k�1 < t � �k; 2 � k � M;

(
ð16Þ

with �M ¼ 1, M = 6. The ETBL of the Gazave model is:

ETBL ¼ ETBL1 þ
X5

k¼2

ETBLk þ ETBL6; ð17Þ

and the equation for each ETBLk can be found in Appendix D.
In figure 3, we presented the theoretical results of

the Gazave model for different growth rates:
r ¼ 0:005; 0:01; 0:03; and 0:05, together with ES from coa-
lescent simulation. The two results fit well again for the tested
parameter values. Thus, our method is flexible to accommo-
date various complicated and realistic demographic histories.

Approximation for Exact Coalescent in
Ultra-Large or Population-Level Samples
We have so far derived the asymptotic expectation of large-
sample TNS for simple, two-, three-, and multiple-stage
exponential growth models (eqs. 7, 12, 15, and 17). All the
theoretical work is constructed under the Kingman’s coales-
cent framework, as we have assumed that the population size
is large and the sample size is much smaller than the popu-
lation size even for large gene genealogies. With this assump-
tion, Wright–Fisher model finds nearly all probability masses
jumping from i lineages to i or i� 1 ancestors in the imme-
diate previous generation, so that the Wright–Fisher model is
well approximated by Kingman’s coalescent. However when
the sample size is ultra large that even accounts for a
significant proportion of the population, the assumption of
n << N does not hold anymore. When n is close to N, there
could be multiple collisions of lineages during a single gener-
ation (Wakeley and Takahashi 2003; Fu 2006; Bhaskar et al.
2014). Such a coalescent process is called “exact coalescent”
(Wakeley and Takahashi 2003; Fu 2006). Whether the theo-
retical results derived based on Kingman’s coalescent can be
directly used for the exact coalescent has been discussed in
former theoretical studies for constant populations (Fu 2006).
Both simulation and theoretical studies demonstrated that in

constant populations, some characteristics of Kingman’s co-
alescent, such as the TBL of a genealogy, provide remarkably
accurate approximation to the exact coalescent (Fu 2006),
whereas some other characteristics, such as the AFS, are less
accurate. The validity of this conclusion was yet to be ad-
dressed in populations with temporally varying size.

In this section, we performed simulation studies for both
the Kingman’s coalescent and exact coalescent processes, and
compared the ETBL and AFS estimated from the simulated
data to assess the performance of Kingman’s coalescent in
approximation of the exact coalescent. For the comparison of
AFS, we focus on singletons as in Bhaskar et al. (2014), and use
EL1, the expected external branches of gene genealogies to
represent the number of singletons. We estimated ETBL and
EL1 as the average of 2,000 generated samples under
Kingman’s coalescent with Hudson’s simulator “ms,” and ob-
tained ETBL and EL1 of exact coalescent samples with a code
modified from Bhaskar et al. (2014). The details of the exact
coalescent can be found in the original literature. We com-
pare ETBL and EL1 for two models: The modified Gazave
model (MGM) and the TEG model. The MGM was used by
Bhaskar et al. (2014), in which the recent growth phase is
approximated by a constant haploid population size of 20,
170, and all the other phases, including the two bottlenecks
are identical to the original Gazave model. The TEG model
was simulated with a current population size N0 ¼ 20;000,
and three growth rates: r ¼ 0:005; 0:01; and 0:05. For each
simulation, we ranged the sample sizes from 500 to 18,000.

The relative bias was calculated as
j ETBLexact�ETBLKingman j

ETBLexact
and

shown in table 1. As we can see from table 1, ETBLs of the
two coalescent processes are quite close for different models
and various growth rates. Even when a large proportion of the
current population is sampled, the relative bias is around 2%.
AFS is less robust to the violation of Kingman’s coalescent
assumption. The relative bias of EL1 remains small even when
the sample size is large, but it becomes significant when the
sample is a large proportion of the current population (e.g.,
n 4 10,000). The relative bias of ETBL and EL1 increasing
with sample size shows similar trend cross different models.
This observation is consistent with former studies (Fu 2006;
Bhaskar et al. 2014). Based on our simulations and Fu (2006)’s
work, our equations of ETBL (eqs. 7, 12, 15, and 17) derived in
previous sections using Kingman’s coalescent theory are still
good estimators of ETBL when the sample size is a significant
proportion of or close to the population size. This is especially
useful for samples from medical studies of small populations,
such as the founder or isolated populations. Note that the
population size we chose in table 1 is relatively small (20,000),
but as pointed out by Fu (2006), the relative bias of the ETBL is
largely a function of n/N instead of absolute N, the property
presented in table 1 is thus valid for other population sizes.

An NLS Fitting Method for Inferring
Population Growth Rate and Time

Parameter Inference

It has been shown in Coventry et al. (2010) that the upward
trend of the TNS with the increase of sample size provides
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useful information for parameter inference on the rate and the
onset time of recent population growth. We name such a data
pattern by “the TNSFS.” As seen from our derived asymptotic
expectation of TNS for different growth models, the TNS is a
nonlinear function of the sample size n, population size N0,
population growth onset time �, and growth rate r. We there-
fore fit the expected TNSFS to the observed trajectory with NLS
for estimation of parameters involved. The observed TNS for a
fixed subsample size was obtained by averaging the TNS in a
number of subsamples of the given size that is randomly drawn
from the original sample. With that in mind, an observed tra-
jectory of TNSFS in this context is the averaged TNSFS curve.

To be more specific, the data used in our method consist
of a pair of vectors: The subsample size, x(i), and the

Table 1. The Relative Bias of ETBL and EL1 for Different Population
History Models, When Using the Kingman’s Coalescent to
Approximate the Exact Coalescent.

Population
Model

Statistics Sample Size

500 1,000 2,000 10,000 15,000 18,000

Gazave Model TBL 0.38% 0.15% 0.25% 0.38% 0.11% 1.18%
L1 0.30% 0.42% 0.95% 4.80% 7.53% 9.37%

TEG, r = 0.005 TBL 0.066% 0.064% 0.20% 0.85% 1.46% 1.37%
L1 0.30% 0.50% 1.12% 5.26% 8.21% 10.02%

TEG, r = 0.01 TBL 0.36% 0.81% 0.61% 1.25% 1.86% 1.95%
L1 0.44% 0.54% 1.06% 5.56% 8.57% 10.53%

TEG, r = 0.05 TBL 0.21% 0.33% 0.56% 1.64% 2.01% 2.52%
L1 0.27% 0.61% 1.49% 6.83% 10.21% 12.37%
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FIG. 3. The theoretical prediction, represented by lines, and simulated results, represented by points, of TNSFS in different parameter settings under the
Gazave model. (A) Illustration of the Gazave model. (B) The TNSFS under the Gazave model. The growth rates are chosen to be
r ¼ 0:005; 0:01; 0:03; and 0:05. The other parameters are set to be the same as the original Gazave model.
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corresponding average count of TNS, SðxðiÞÞ, for
2 � xð1Þ � � � � � xðn� 1Þ � n. Ideally, we can obtain all
n� 1 data points. Sometimes, for the convenience, only d
of the n� 1 points are sampled. We denote the simplified
data by D ¼ fðxðiÞ; SðxðiÞÞÞ; 2 � xðiÞ � n; 1 � i � dg. Now
we focus on the parameter inference of a TEG model with no
population size jump at �, and other growth models can be
implemented similarly. The parameters of this model include
the growth rate r, the onset time of the growth phase �, and
the present population size N0. Given the parameters, the
expected TNS, ESðiÞ ¼ f ðxðiÞ j r; �;N0Þ, can be analytically
estimated through the formulae derived in previous sections
(eq. 12). The optimization function aims to minimize the
squared error over the parameters:

minimize
r;�;N0

Xd

i¼1

�
f ðxðiÞ j r; �;N0Þ � SðiÞ

�2

: ð18Þ

The Levenberg–Marquardt algorithm was used here to obtain
the least-squares fitting estimates (Galassi et al. 2009).

Multiple Loci with Heterogeneous Mutation Rates

In the above section, we assumed that the mutation rates are
uniform across the genome so that the segregating sites dis-
covered in different regions can be merged together to cal-
culate the TNSFS and infer parameters by the NLS. However,
it is well known that high heterogeneity in mutation rates
exists across the genome (Tyekucheva et al. 2008). If the local
mutation rates are known from other sources, the optimiza-
tion function in equation (18) can be modified to account for
the influence of heterogeneity on the TNS:

minimize
r;�;N0

XL

l¼1

Xd

i¼1

�
f ðxði; lÞ j r; �;N0; �lÞ � Sði; lÞ

�2

; ð19Þ

where L is the number of loci, and�l is the local mutation rate
for locus l and assumed to be known.

If the local mutation rates are unknown, we adopt two
approaches to model the mutation rate heterogeneity. In the
first approach, we introduce a new parameter for each locus,
�l ¼

�l

�0
, the relative mutation rate of locus l over the genome

averaged mutation rate �0. In the second approach, we
assume the relative mutation rates from different loci
follow a gamma distribution (Nei et al. 1976; Wakeley 1993;
Yang 1994):

hð� j �Þ ¼
��

Gð�Þ
���1e���; ð20Þ

where � is the shape parameter. The above distribution is a
specific case of gamma distribution in which the rate param-
eter equals the shape parameters 	 ¼ �, and thus E� ¼ 1
and Varð�Þ ¼ 1=�. As it is difficult to obtain the integral of
f ðxðiÞ j r; �;N0; �Þ with respect to the gamma distribution,
we use the discrete approximation of the integral following
Yang (1994)’s scheme. We discretize the p.d.f. of the gamma
distribution into k categories with equal probability in each
category pð�j j �Þ ¼ 1=k and �j being the mean of each

category. Summing over the probabilities of the k categories,
the optimization function under heterogeneous mutation
rate now becomes:

minimize
r;�;N0;�

XL

l¼1

Xd

i¼1

�
f ðxðiÞ j r; �;N0; �Þ � SðiÞ

�2

: ð21Þ

with f ðxðiÞ j r; �;N0; �Þ ¼
Pk

j¼1 f ðxðiÞ j r; �;N0; �jÞ�

pð�j j �Þ. Note that in both approaches, we do not estimate
the averaged mutation rates across different loci, �0, because
in practice, we found it is not very informative to estimate the
absolute mutation rates jointly with the other population
genetic parameters.

Confidence Intervals for Parameters

We used the resampling method to compute the confidence
intervals for the estimated parameters (Efron 1982). Fixing the
parameters, such as onset time and rate of the growth phase,
at the values estimated from above procedure, we can gen-
erate a sample of n haplotypes using coalescent simulator. By
repeatedly generating samples of size n for K times, we ob-
tained the summarized data points Dk ¼ fðxkðiÞ;
SkðxðiÞÞÞ; 2 � xkðiÞ � n; 1 � i � dg; 1 � k � K. Then, the
NLS fitting algorithm described in previous section was ap-
plied to the parameter estimation for each Dk. The 95% con-
fidence intervals of the parameters were estimated as the
2.5th and 97.5th quantiles from the K estimates.

Model Comparison

The well-known Akaike information criterion (AIC) is widely
used for selection of models that better fit the observed data
(Akaike 1974). AIC is based on the likelihood and the asymp-
totic properties of maximum-likelihood estimator, with the
number of free parameters in the penalty term. A model with
a smaller AIC is preferred among different models. As the full
likelihood of our observed data is not known, we used a
modified AIC in the spirit of the usual AIC. In our modified
AIC, the likelihood is replaced by the quasi-likelihood which
approximates the likelihood involving only first two moments
of the data (McCullagh and Nelder 1989). Quasi-likelihood is
often used for data without explicit distribution functions,
and is often adopted in place of full likelihood for model
selection (Pan 2001). Our modified AIC is defined as
AIC ¼ �2logLþ 2p, with p being the number of free param-
eters and logL the log quasi-likelihood. This modified AIC may
not be the optimal criterion, but provides a ground for model
comparison.

Let G denote parameters in mean and variance–
covariance functions under a specific demographic model,
and S ¼ fSjðxjÞ; 1 � j � dg denote the d data points from
the TNSFS trajectory corresponding to subsample sizes
X ¼ fxj; 1 � j � dg. The quasi-likelihood then becomes

logLðG j SÞ ¼ f ðS jGÞ

¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ð2
Þd jR j
q exp

�
�

1

2
ðS� �ÞT��1ðS� �Þ

�
;
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where R is the covariance matrix of S, jR j is the determi-
nant of R, each entry of l; �j ¼ f ðxj jGÞ is the expected TNS
from a given sample xj and the population growth model. The
covariance matrix R takes into account the dependence
among data points sampled from the TNSFS trajectories.

Note that in the above likelihood function, it is not trivial
to obtain the exact form of the covariance matrix R.
Therefore, we approximate R with the bootstrapping R̂ esti-
mated from data. Another consequence of using data-
dependent covariance matrix is that in the quasi-likelihood
of all the demographic models, the covariance matrices R are
the same. We calculate AIC ¼ �2logLþ 2p as a criterion for
model comparison in the “Application to Data” section.

Simulation Results
We examined the performance of our method using simu-
lated data. A sample of 20,000 haplotypes was generated with
the coalescent simulator ms for a 5-Mb region. We assumed
the current haploid population size N0 ¼ 2� 106 and the
population following a TEG with growth rates r ¼ 0:01;0:05;
and 0:1 and onset time � ¼ 50 and 100 generations. For each
simulated data, a series of subsamples were randomly drawn
from it, and the TNSFS trajectory was obtained. For each
combination of the parameters, 40 samples were simulated,
and the TNSFS trajectories were used as the input data for the
NLS fitting method as described in previous section. We
found that two parameters of the three, N0, � and r, can be
estimated accurately and precisely if fixing the third. But if
inferred jointly, they had some wider confidence intervals.
Here we assumed the current population size N0 was
known, and investigated the performance of estimating the
other two parameters. The boxplots of the inferred � ad r
were presented in figure 4. The method recovered the pa-
rameters accurately within the tested parameters ranges. We
observed that when the growth rate was smaller, the esti-
mates became biased, which required data of a larger sample
size and spanning more regions to gain accuracy (results not
shown).

The Effect of Sequencing Coverage on the Accuracy

The presented method assumes the TNSFS trajectories are
generated from segregating sites without sequencing
errors. In reality, sequencing data may be generated
with low or mediate sequencing depth. The TNSFS trajec-
tories are sensitive to the abundance of rare mutants,
especially, the singletons and doubletons, which may be
subject to high false positive rates in sequencing, and thus
cause bias in estimate. To test the robustness of our
method against sequencing error, we modified the
above simulation pipeline to include the effect of se-
quencing error. For a chosen average sequencing depth,
we assumed each position of the sequence (including
both polymorphic sites and nonpolymorphic sites) had
a number of sequencing reads, which follow a
Poisson distribution with the mean equal to the sequenc-
ing depth C. For each of the sequencing reads, the
sequencing error rate was chosen to be 0.5%. When the

sequencing data were generated, we run samtools mpi-
leup to determine the boundaries for the genotype calls
for a given coverage level, and did genotype calling for
each individual (Li et al. 2009). This SNP calling scheme
performs worse than those Bayesian methods (such as, Li
2011; Nielsen et al. 2012), but is computationally inexpen-
sive and works for large sample data in our case.

We simulated the demographic history with the parame-
ters: r = 0.05, � = 100, and N0 ¼ 2� 106. We simulated four
levels of sequencing depths: C ¼ 5; 10; 20; and 50. The in-
ferred genotype data were used to construct the TNSFS tra-
jectories, and the method was applied to the trajectories to
infer the population growth parameters. The boxplots of the
inferred parameters were presented in figure 5. When the
sequencing depth is low (C = 5), the bias of inference is sig-
nificant, but with the increase of sequencing depth (beyond
C = 10), the bias becomes subtle (figs. 6 and 7).

A

B

FIG. 4. The accuracy and precision of the estimated population growth
rate and onset time of the exponential growth phase in the two-stage
model. (A) Population growth rate. The X axis is the true growth rate
used in coalescent simulation and the Y axis is the inferred growth rate
values for 40 simulated samples. Each simulated sample was generated
for a 5-Mb region with n = 20, 000, N0 ¼ 2� 106, and mutation rate
� ¼ 10�8 per site per generation. (B) Population growth onset time.
The other settings are the same as (A).
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Application to Data

Exome Sequencing of European and African
Populations

We applied the above proposed method to a recent popula-
tion sequencing data set by Fu et al. (2013), in which 15,336

target genes for 4,298 individuals with European ancestry and
2, 217 individuals with African ancestry were sequenced.
There are totally 709,816 and 643,128 SNPs identified in
the two samples, respectively. We downloaded the
vcf file from the NHLBI Exome Sequencing Project (ESP)
Exome Variant Server (http://evs.gs.washington.edu/EVS/,
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FIG. 5. The effect of sequencing coverage on the accuracy of parameter estimation of the exponential growth phase in the two-stage growth model. (A)
Population growth rate. The X axis is the average sequencing coverage in the simulation and the Y axis is the inferred growth rate values for 40 simulated
samples. Each simulated sample was generated for a 5-Mb region with n = 20,000, N0 ¼ 2� 106, mutation rate � ¼ 10�8 per site per generation, and
the true growth rate is 0.05. (B) Population growth onset time. The true onset time is 100 generations ago. The other settings are the same as (A).
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last accessed July 30, 2015). The TNSFS curves for a series of
subsample sizes were constructed from the SNP allele fre-
quencies in the vcf files.

We assumed a mutation rate� ¼ 1:2� 10�8 per site per
generation (Genomes Project Consortium et al. 2010).
We started with fitting a TEG model. We applied the
NLS fitting method to the TNSFS of European populations,
and estimated the starting time of the exponential growth
of the European population to be 356 generations ago, or
8.9 ka assuming 25 years per generation, the growth
rate r̂ ¼ 1:37%, and the current population size
N̂1 ¼ 886; 010.

The TEG model may be oversimplified. We further ex-
plored more complicated models by taking into account

the ancient demography. Recently, Gazave et al. (2014) pro-
posed a six-epoch model for the European demographic his-
tory, which includes a recent exponential growth phase and
five additional epochs with different population sizes and
durations (fig. 3). The Gazave model is more realistic than
the TEG model, as it explicitly models the bottlenecks during
the Out-of-Africa migration and after the split of ancient
Eurasian populations. Six parameters were included in the
Gazave model: Three modeling the recent exponential
growth phase, N1, r, and T1; and three additional, N3,
N4 = N6 and N5, accounting for the population size jumps in
the history. Here, N3 is the population size of the recent pop-
ulation bottleneck, N5 the population size during the ancient
population bottleneck, N4 and N6 ancient population sizes
that are set to be equal to reduce the number of parameters.
Because the Gazave model is complicated and includes mul-
tiple parameters, Gazave et al. (2014) fixed some parameters
at the values obtained from previous studies (Keinan et al.
2007), and only allowed three free parameters accounting for
the recent exponential growth: N1, r, and T1 (or alternatively,
N1, T1, and N2 ¼ N1e�rT1 , see Model II in table 1 of Gazave
et al. [2014]). In the following context, we referred to six-
parameter Gazave model as 6p-GM, and three-parameter
Gazave model as 3p-GM. We also modified 3p-GM to allow
more free parameters.

We first fitted Model 6p-GM to the ESP data (fig. 6). The
exponential growth stage of the European population was
estimated to start at 290.4 (278–302) generations ago, or
7.26 ka (95% CI: 6:95� 7:55ky) if assuming 25 years per gen-
eration, the growth rate estimated to be r̂ ¼ 1:49%
(1:11� 1:87%), and the current population size N̂1 ¼ 1;
198;487 (1:086� 106 � 1:312� 106). The AIC scores of
the TEG model and the six-parameter GM indicate that
Model 6p-GM performs better than TEG at data fitting
(AICTEG ¼ 6;166:3 vs. AIC6p�GM ¼ 101:18).

Next, we fixed some of the parameters for population size
jumps at literature values. For example, in the five-parameter
Gazave model (5p-GM), we set N5 ¼ 189:4 (the ancient bot-
tleneck size) as in Gazave et al. (2014), and in the four-pa-
rameter Gazave model (4p-GM), we fixed one more
parameter N3 ¼ 549 as in Gazave et al. (2014). The inferred
parameter values and the corresponding AIC for Model 4p-
GM and 5p-GM are listed in table 2. The comparison of AIC
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sample size (n)
0 1000 2000 3000 4000

se
gr

eg
at

in
g 

si
te

s 
(T

N
S

)

10 5

0

2

4

6

8

10

12

14

16

18
AA all SNP

NLS fit for AA all SNP

FIG. 7. The expected TNS (ES) as a function of haploid sample size (n)
for Africans. The points represent data points from the ESP (Fu et al.
2013). The solid lines represent the fitted expectation of TNSFS with the
population size N0, the population growth rate r, and the initial time of
the growth phase � estimated by the nonlinear squares fitting.

Table 2. The Comparison of Model Fitting on the European
Population Sequencing Data of ESP.

Model Inferred Parameters �logL k AIC

N1 r T1 N3 N4ðN6Þ N5

GM, 6 par 1,198,487 0.0149 290.4 2,020 13,143 62 44.59 6 101.18

GM, 5 par 1,131,347 0.0156 281.16 4,843 8,243 — 158.03 5 326.06

GM, 4 par 1,306,083 0.0176 225.0 — 10,332 — 5,497.56 4 11,003.0

GM, 3 par 1,224,400 0.0171 224.8 — — — 8,761.10 3 17,528.0

TEG, 3 par 886,010 0.0137 356.3 — — — 3,080.16 3 6,166.3

NOTE.—Figure 3 illustrates the parameters of the Gazave model. In the
Gazave model, N4 = N6; N2 ¼ N1e�rT1 . The nonfree parameters of the Gazave
model in the table (indicated with “—”) were fixed to the values from Gazave
et al. (2014).
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among various models we have fitted provides some inter-
esting insights:

1) The substantial difference of AIC between 6p-GM and
TEG demonstrates that ancient demography has a sig-
nificant impact on estimating the parameters of recent
population growth, which is consistent with the obser-
vation by Gazave et al. (2014).

2) The prominent improvement of model fitting from
4p-GM to 5p-GM by including N3 indicates the signifi-
cant effect of recent bottleneck on the TNSFS.

3) The improvement from 5p-GM to 6p-GM by including
N5, the ancient bottleneck is relatively minor. We also
noticed that the three estimated parameters related to
the recent population growth (N1, r, and T1) are quite
similar between 5p-GM and 6p-GM.

We also inferred population growth for the African popu-
lations (fig. 7). African populations have a simpler demo-
graphic history, and we adopted the demographic model in
Fu et al. (2013), which was modified based on Gravel et al.
(2011). The model includes a recent exponential growth
phase and two constant durations: The ancient population
has a size of N3 ¼ 7;310, and it instantaneously became N2

¼ 14;474 at 148 ka. We estimated the three free parameters
of the exponential growth phase, and the ancient population
size N3 (this is also chosen based on model comparison using
AIC scores, similarly to the analysis of the European data). The
growth onset of the African populations was estimated to be
�̂ ¼ 10:01 ka (95% CI: 9:63� 10:39ky), with r̂ ¼ 0:735%
(95% CI: 0:593� 0:877%), and the current effective
population size N̂1 ¼ 5:062� 105 (95% CI: 4:293� 105–
5:831� 105). The growth of the African populations is
relatively mild compared with the European populations,
and its onset time is consistent with the time of Agriculture
origin around 8� 10 ka. Overall, our estimates of growth
rates and onset times confirm former studies (Nelson et al.
2012; Tennessen et al. 2012).

Discussion
We derived the exact and asymptotic expectations of large-
sample TNS for multiple-stage exponential growth models. The
asymptotic equations are in simple analytical form and provide
accurate approximation to the exact equations. Based on these
asymptotic equations, an analog of Watterson’s diversity mea-
sure �W can be derived for samples in nonequilibrium popu-
lations, or populations still undergoing expansion or
contraction. Watterson’s diversity measure ignores the influ-
ence of the demography on the genetic polymorphism, and
thus leads to a bias estimate of the diversity for growing and
contracting population. Our proposed diversity measure pro-
vides a consistent estimate of the genetic diversity.

We further demonstrated by simulations that the ex-
pected TBL derived under Kingman’s coalescent framework
is still valid for population level sequencing data that may
violate Kingman’s coalescent assumption n << N. Therefore,
the expectation of TNS for large n! N can be approximated
by that derived under Kingman’s assumption.

Instead of using the full data or the AFS to construct the
coalescent likelihood (Polanski and Kimmel 2003; Marth et al.
2004; Chen 2012), we focused on an informative statistic of
the data: The increasing trend of the TNSFS. As the theoretical
TNSFS is a nonlinear function of demographic parameters,
such as the rate and the onset time of population growth, an
NLS fitting to the observed TNSFS trajectory was used to infer
population growth rate and onset time. We applied this
method to simulated data and two real data sets to demon-
strate its performance.

Our TNSFS method shares some similarities with the
widely used NLFT methods (the number of lineages as a
function of time, e.g., the skyline plot methods [Pybus et al.
2000; Drummond et al. 2005], and Maruvka et al. [2011]) in
that both investigate the functional curves of summary sta-
tistics constructed from the sample. Our method has some
good features in application compared with the NLFT meth-
ods: The functional curve of TNSFS analyzed by our method
can be easily estimated from the sample, whereas the NLFT
methods rely on the inference of a gene genealogy for the
sample, which was not directly observable from the data and
may introduce uncertainty if assuming a fixed genealogy is
the true genealogy. Furthermore, the NLFT methods are more
suitable for nonrecombining regions, such as, mitochondrial
DNA and Y chromosomes, as it is reasonable to construct one
single genealogy for one such region, but one single gene
genealogy can hardly represent the histories across the
recombining regions. Our method does not need construc-
tion of genealogies, and thus can be used to analyze data
sampled from large-scale genomic regions with or without
recombination.

It is known in population genetic studies that increasing
the sample size has limited effect on the deep branches in a
gene genealogy, and adding more individuals (haplotypes) to
a sample mainly changes the lower part of a coalescent tree,
implying that large samples have limited incremental benefits
on inferring ancient demographic history comparing with
small samples. On the other hand, as illustrated in this article
and Coventry et al. (2010), a large sample of sequencing data
helps to elucidate very recent events, such as the recent rapid
growth of human populations, which was out of the scope of
existing ancestral inference methods based on small samples
(e.g., the PSMC method by Li and Durbin [2011]). Inferring
very recent demographic history is important for medical
studies, as demographic processes, as well as selection,
shape the genetic architecture underlying diseases and com-
plex traits. As the effective parameter range of the TNSFS
method is different from the existing methods for ancient
history, in the future study, we will combine the TNSFS
method with other methods, such as the AFS-based methods,
to jointly infer both ancient and very recent demography
(Polanski and Kimmel 2003; Evans et al. 2007; Gutenkunst
et al. 2009; Lukić et al. 2011; �Zivković and Stephan 2011;
Chen 2012; Song and Steinr€ucken 2012; Harris and Nielsen
2013). We expect the two classes of methods will comple-
ment each other, and the method will be a very useful tool for
population genetic inference based on large-scale population
sequencing data.
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Appendix A: The Expectation of Exact
Intercoalescence Times for a Simple
Exponential Growth Model
The exact distribution and expectation of intercoalescence
times in a population with time-varying size were derived
in Polanski et al. (2003) using integral transform. Here, we
derive the expected coalescence times with a simple
approach. Assume that n haplotypes are sampled from a
contemporary population, and the population evolves deter-
ministically with size N(t) at t generations ago from the pre-
sent. When tracing back in time, the exact probability that
there are AnðtÞ ¼ m ancestral haplotypes (lineages) at time
t is (Griffiths and Tavar�e 1998):

f ðAnðtÞ ¼ mÞ ¼ pn;mðtÞ

¼
Xn

i¼m

An;m
i e

�iði�1Þ
2N0

R t

0 vðuÞdu; 1 � m � n;
ðA1Þ

where N0 � Nð0Þ is the current population size, and
vðtÞ ¼ N0=NðtÞ. For a population under exponential
growth with the rate r, vðtÞ ¼ ert. The coefficient of the
hypergeometric series is given by

An;m
i ¼

ð�1Þi�m
ð2i� 1Þmði�1Þn½i�

m!ði�mÞ!nðiÞ
; ðA2Þ

with nðkÞ ¼ nðnþ 1Þ:::ðnþ k� 1Þ and n½k� ¼ nðn� 1Þ:::
ðn� kþ 1Þ being the rising and falling factorial functions.
The expectation of intercoalescence time Wm can then
be derived using the distribution of lineage numbers
(eq. A1) as:

EWm ¼

Z 1
t¼0

pn;mðtÞdt ¼

Z 1
t¼0

Xn

i¼m

An;m
i e�

iði�1Þ
2N

R t

0 erududt

¼
Xn

i¼m

An;m
i e

iði�1Þ
2Nr

Z 1
0

e�
iði�1Þ

2Nr ert

dt

¼
Xn

i¼m

An;m
i e

iði�1Þ
2Nr

1

r
Eið�

iði� 1Þ

2Nr
Þ;

ðA3Þ

where Eið�Þ denotes exponential integral (Press et al. 1992). It
can be seen that equation (A3) is equivalent to equation
(35) in Polanski et al. (2003).

Appendix B: The Total Branch Lengths of
Gene Genealogies for a TEG Model
The TEG model was extensively used to approximate human
demography in former studies (e.g., Adams and Hudson 2004;
Evans et al. 2007; Coventry et al. 2010; Chen 2013). The model
assumes that the ancient population has a constant size of Na

until time �, and it starts an exponential growth since then
with a rate of r until the present.

The derivation of the ETBLs of gene genealogies for such a
two-stage growth model is more complicated than the simple
exponential growth model presented in Appendix A. We
divide the segregating sites S into two groups: Those arose
in the ancient population before �, Sa, and those arose during
the growth phase, Sg. And similarly, the gene genealogy is
also split into two parts, which are in the duration of the
ancestral population, denoted by TBLaðnÞ, and in the
growth phase, denoted by TBLgðnÞ. Here, (n) denotes that
TBL is a function of the size of the contemporary sample. And
ETBLðnÞ ¼ ETBLgðnÞ þ ETBLaðnÞ.

(1) TBLgðnÞ

If we assume the ancestral lineage number at time � is m, then
conditional on m, EðTBLgðnÞ jmÞ is

EðTBLgðnÞ jm; �; rÞ ¼
Xn

j¼m

jEðWj jm; �; rÞ; ðA4Þ

where Wj is the intercoalescence time during which there are j
lineages, r is the population growth rate, and � is the onset
time of the growth phase. Let pn;mð�Þ be the probability that
there are m ancestral lineages at time �,ETBLgðnÞ is obtained
by summing over possible m; 1 � m � n:

EðTBLgðnÞÞ ¼
Xn

m¼1

pn;mð�ÞEðTBLgðnÞ jm; �; rÞ: ðA5Þ

As in Chen (2013) the conditional expected intercoales-
cence time Tj given m; �; r is written as:

EðWj jm; �; rÞ ¼

Z �

0

pn;jðtÞpj;mð� � tÞ

pn;mð�Þ
dt: ðA6Þ

Substituting equations (A6) and (A4) into (A5), we get,

EðTBLgðnÞÞ

¼
Xn

m¼1

pn;mð�Þ
Xn

j¼m

j

Z �

0

pn;jðtÞpj;mð� � tÞ

pn;mð�Þ
dt

¼

Z �

0

Xn

m¼1

Xn

j¼m

jpn;jðtÞpj;mð� � tÞdt

¼

Z �

0

Xn

j¼1

jpn;jðtÞ
Xj

m¼1

pj;mð� � tÞdt

ðA7Þ
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¼

Z �

0

EAnðtÞdt

¼

Z �

0

n

1þ
n

2
gðtÞ

dt

¼
2nN0ðr� þ logð2N0rÞ � logððer� � 1Þnþ 2N0rÞÞ

2N0r � n
:

(2) TBLaðnÞ

The part of a genealogy in the ancestral population before the
onset of the growth phase is written as:

ETBLaðnÞ ¼ EmðEðTBLaðnÞ jmÞÞ

¼
Xn

m¼2

pn;mð�ÞEðTBLaðnÞ jmÞ:
ðA8Þ

EðTBLaðnÞ jmÞ is in well-known form if the ancient popu-
lation is in equilibrium with a constant size before the expo-
nential growth phase:

EðTBLaðnÞ jmÞ ¼ 2Na

Xm�1

j¼1

1

j
ðA9Þ

&2NalogðmÞ þ �; ðA10Þ

with � ¼ 0:57721566 being the Euler constant. Equation
(A10) is an accurate approximation of equation (A9) when
the sample size m is large (Watterson 1975).

The expectation of TBLaðnÞ is then estimated by

EðTBLaðnÞÞ ¼ EðEðTBLaðnÞ jmÞÞ

¼ 2NaE

Xm�1

i¼1

1

i

 !

&2NaEðlogðmÞ þ �Þ

&2Na logðmÞ þ � �
1

2
ð

1

u2
m

Þ � �2
m

� �

&2NaðlogðmÞ þ �Þ:

ðA11Þ

Note that in the above equation, um is the expected
number of ancient lineages Anð�Þ at time �, which is

um ¼ EðAnð�ÞÞ ¼
n

1þ n er��1
2Nr

: ðA12Þ

The remaining term 1
2 ð

1
u2

m
Þ � �2

m can be ignored since �2
m is

relatively very small when compared with um (Chen H
and Chen K 2013), and the remaining term is on order
m�1, which shrinks to zero as n!1; n=m! a, and
a <1.

Appendix C: The Total Branch Lengths of
Gene Genealogies for a Three-Stage
Exponential Growth Model
The three-stage exponential growth model can be written as:

NðtÞ ¼

N0e�r1t; t � �1

N0e�r1�1�r2ðt��1Þ; �1 � t � �2

Na; t 4 �2:

8><
>: ðA13Þ

From this piecewise population size function, we can get
the scaling function g(t) for t � �2:

gðtÞ ¼

1

N0r1
ðer1t � 1Þ; t � �1;

er1�1

N0r2
ðer2ðt��1Þ � 1Þ þ

1

N0r1
ðer1�1 � 1Þ; �1 � t � �2;

8>>><
>>>:

ðA14Þ
and further we can obtain ETBLg for the two growth stages:

ETBLg

¼
2nN0

2N0r1 � n

�logðn er1�1 � 1ð Þ þ 2N0r1Þ

þlogð2N0r1Þ þ r1�1

( )

�
2nN0r1

ner1�1ðr2 � r1Þ � nr2 þ 2N0r1r2

�

log
r2ð2N0r1 � nÞ þ nr1er1�1�r2�1þr2�2

þnðr2 � r1Þe
r1�1

� �

�log r2 n er1�1 � 1ð Þ þ 2N0r1ð Þð Þ

þr2�1 � r2�2

8>>>><
>>>>:

9>>>>=
>>>>;
:

ðA15Þ

The ETBLa for the constant size stage is similar to that of
the two-stage growth model shown in Appendix B.

Appendix D: The Total Branch Lengths of
Gene Genealogies for the Gazave Model
Gazave et al. (2014) proposed a six-epoch model for the
European population, which includes a phase of recent expo-
nential growth, and five phases of constant sizes. Let M
denote the number of epochs:

NðtÞ ¼
N1e�rt; t � �1;

Nk; �k�1 < t � �k; 2 � k � M:

(
ðA16Þ

Then the time-scaling function is

gðtÞ ¼

1

N1r
ðert � 1Þ; t � �1;

1

N1r
ðer�1 � 1Þ þ

t� �1

N2
; �1 � t � �2;

1

N1r
ðer�1 � 1Þ þ

Xk�1

j¼2

�j � �j�1

Nk�1
þ

t� �k�1

Nk
;

�k�1 � t � �k; 2 < k � M:

8>>>>>>>>>>><
>>>>>>>>>>>:

ðA17Þ
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The ETBL of the first phase (the exponential growth phase)
follows (A7). The ETBL of the second phase is:

ETBL2 ¼

Z �2

�1

EðAnðtÞÞdt ¼

Z �2

�1

n

1þ
n

2
gðtÞ

dt

¼ 2N2f�log ðer� � 1Þ=ðN1rÞ þ 2=nð Þ

þ log ðer�1�1Þ=ðN1rÞ þ ð�2 � �1Þ=N2 þ 2=nð Þg

ðA18Þ

Similarly, it can be easily shown that the ETBL of the k
(1 < k < M) stage of the Gazave model can be written as:

ETBLk ¼ 2Nklog

(Xk

j¼2

ð�j � �j�1Þ

Nj
þ
ðer�1 � 1Þ

rN1
þ

2

n

) !

�2Nklog
Xk�1

j¼2

�j � �j�1

Nj
þ
ðer�1 � 1Þ

rN1
þ

2

n

 !
:

ðA19Þ

The ETBL of stage M follows equation (A11):

ETBLM ¼ 2NMðlogðEAnð�M�1Þ þ �Þ; ðA20Þ

with EAnð�M�1Þ ¼
n

1þn
2gð�M�1Þ

:

The total ETBL is the sum of the three components.
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