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a b s t r a c t

Recent positive selection can increase the frequency of an advantageous mutant rapidly enough that a
relatively long ancestral haplotype will be remained intact around it. We present a hiddenMarkov model
(HMM) to identify such haplotype structures. With HMM identified haplotype structures, a population
genetic model for the extent of ancestral haplotypes is then adopted for parameter inference of the
selection intensity and the allele age. Simulations show that this method can detect selection under a
wide range of conditions and has higher power than the existing frequency spectrum-based method.
In addition, it provides good estimate of the selection coefficients and allele ages for strong selection.
The method analyzes large data sets in a reasonable amount of running time. This method is applied
to HapMap III data for a genome scan, and identifies a list of candidate regions putatively under recent
positive selection. It is also applied to several genes known to be under recent positive selection, including
the LCT, KITLG and TYRP1 genes in Northern Europeans, and OCA2 in East Asians, to estimate their allele
ages and selection coefficients.

© 2014 Elsevier Inc. All rights reserved.
1. Introduction

Natural selection plays an important role in the recent history
of human evolution, and is still active in shaping the genetic
diversity pattern of human populations. Genes under positive
selection may be involved in the adaption to new environments
and in the resistance to infectious diseases (Hamblin et al., 2002;
Bersaglieri et al., 2004; Tishkoff et al., 2007; Simonson et al., 2010;
Yi et al., 2010; Beall et al., 2010; Peng et al., 2011; Xu et al.,
2011; Xiang et al., 2013). In recent years, interest is growing in
detecting positive selection using DNA polymorphism data, since
the rapid accumulation of genomic level molecular polymorphism
data provides a chance to systemically investigate the footprints
of natural selection (Tajima, 1989; Fu and Li, 1993; Fay and Wu,
2000; Akey et al., 2002; Sabeti et al., 2002; Kim and Stephan,
2002; Nielsen et al., 2005; Voight et al., 2006; Tang et al., 2007;
Sabeti et al., 2007; Williamson et al., 2007; Pickrell et al., 2009;
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Chen et al., 2010; Grossman et al., 2013). Recent positive selection
(RPS), which occurred in the recent past and is still active, has
gained particular attention. RPS can increase the frequency of
advantageous alleles in a short time, and thus result in high level of
haplotype sharing in the vicinity of the selectedmutant, and higher
homozygosity among the selected haplotypes than those carrying
the neutral allele. This unique pattern of multilocus haplotype
structure enables methodology development for identifying genes
under RPS and parameter inference of the selection process.

Statistical tests have beendeveloped to test for natural selection
based onmultilocus haplotype frequency distribution or haplotype
structure (e.g., Ewens, 1972, Slatkin, 1994, Depaulis et al., 1998,
Innan et al., 2005). Innan et al. (2005) presented a good review
of these haplotype-based methods. Among the various haplotype-
based tests, several exploit the specific haplotype structure caused
by RPS by comparing the homozygosity level between selected and
neutral haplotype groups (e.g., Hudson et al., 1994, Sabeti et al.,
2002, Hanchard et al., 2005, Voight et al., 2006). The first of this
kind was proposed by Hudson et al. (1994). Their haplotype test
was designed to examine a group of high frequency haplotypes
with little genetic variation among them. The test was carried out
by estimating the probability of observing fewer polymorphic sites
in repeated coalescent simulations given the sample size and allele
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counts. Hudson et al. (1994) applied the method to analyze the
Sod gene in Drosophila melanogaster. At this locus, there are two
alleles, labeled by ‘‘slow’’ and ‘‘fast’’. Hudson et al. (1994) found
that there was no mutation among the slow allele group, which
has a frequency of approximately 18%, and concluded that there
was a significant deviation from neutrality. Sabeti et al. (2002)
proposed a Relative Extended Haplotype Homozygosity (REHH)
test, which starts with choosing a ‘‘core region’’ (Sabeti et al.,
2002), a small region of very low historical recombination, and
then calculates as the test statistic the ratio of Extended Haplotype
Homozygosity (EHH) of the core haplotype under test over the
other core haplotypes. The significance level of the REHH test is
generated by coalescent simulation of neutral data that match to
the real data byhaplotype groupnumbers andpolymorphism level.
The method was applied to identify the selected core haplotypes
in two malaria-resistance genes G6PD and CD40, and later to the
HapMap data for a genome-wide scan (Sabeti et al., 2007). The
iHS (integrated haplotype score) test, as a variant of REHH test,
was proposed by Voight et al. (2006). The integrated EHH (iHH,
defined as the area under the EHH curve) for the ancestral and
derived alleles of the mutant are first estimated. The iHS score is
then standardized to follow a normal distribution approximately,
and subsequently used to test the deviation from neutral model.

In addition to detecting selection, one may be also interested in
estimating the selection intensity and the timing of the selection
process. There are several methods for this purpose (Slatkin and
Rannala, 1997; Slatkin, 2000; Slatkin and Rannala, 2000; Slatkin,
2001, 2002; Kim and Stephan, 2002; Coop and Griffiths, 2004;
Rannala and Reeve, 2003; Slatkin, 2008; Chen and Slatkin, 2013).
Among them, some consider a single marker linked to the selected
locus (Slatkin and Rannala, 1997; Slatkin, 2000, 2001; Kim and
Stephan, 2002); and only a few of them model the haplotype
structure of multiple marker loci (Coop and Griffiths, 2004;
Rannala and Reeve, 2003; Slatkin, 2008; Chen and Slatkin, 2013).
Coop and Griffiths (2004) developed a full likelihood method
under the structured-coalescent framework (Hudson and Kaplan,
1988). They adopted the time-reversible Moran model to first
simulate the allele frequency trajectory of the selectedmutant, and
then conditioning on the trajectory, they were able to simulate
the genealogical history of the sample. The limitation of their
method is that only mutations among different haplotypes are
considered and the method is only applicable to non-recombining
regions. Rannala and Reeve (2003) modeled both recombination
and mutation, but their method depicts the haplotype structure
in the vicinity of mutants under neutrality and has unrealistic
assumptions of constant allele frequencies for all loci during the
selective process. Slatkin (2008) used a linear birth-and-death
process to simulate the allelic genealogies of selected mutants and
modeled the multilocus haplotype structure under the influence
of both recombination and mutation. Chen and Slatkin (2013)
also proposed a multilocus haplotype model that describes the
dynamics of the haplotype structure under the joint effects of
selection, recombination and mutation, by efficiently reducing the
complexity of state spaces. Their method exploits the importance
sampling approach to generate the historical allele frequency
trajectory of the selected mutant, and thus works for populations
with temporally changing size (Slatkin, 2001). All the methods
are coalescent-based and take into account of randomness of
trajectory and genealogies by Monte Carlo averaging, which
requires intensive computation. In comparison to the above
computationally intensivemethods, Voight et al. (2006)’s approach
is simplified and computationally feasible. Their method estimates
the distance at which the haplotype sharing decreases to a pre-
chosen level, and then assumes the decaying of haplotype sharing
follows a Poisson process. Voight et al. (2006)’s method further
assumes the independent histories of different haplotypes to avoid
intensive computation due to the integration over unknown gene
genealogies, and thus is suitable for whole-genome analysis.

In this paper, we propose a hiddenMarkovmodel to identify the
ancestral haplotypes retained during the selective process for the
purpose of both detecting selection and estimating the selection
intensity. Comparing to the existing methods, e.g., the REHH and
iHS tests, which use summary statistics to evaluate the similarity of
haplotypes, our method is model-based so that it has the potential
to be extended to more complicated scenarios, such as, multiple
ancestral haplotype groups (soft sweeps on standing variation,
Hermisson and Pennings, 2005), haplotype data from multiple
populations, and genotype data with unknown phase.

The method is also different from the aforementioned coales-
cent-based models in that we do not try to simulate gene
genealogies among individuals and the events occurring along the
genealogies byMarkov ChainMonte Carlo or importance sampling
approaches (Slatkin, 2008; Coop and Griffiths, 2004; Chen and
Slatkin, 2013). Our method is similar to that of Voight et al.
(2006) in this respect. We treat each haplotype independently
by assuming a ‘‘star’’ genealogy and ignore the randomness of
frequency trajectory of the selected allele. Both methods are
computationally efficient and applicable to genome-wide analysis.
Compared to Voight et al. (2006), our method provides a better
estimation of the selection coefficient when the selected allele is
common or nearly fixed, since we explicitly model the probability
of effective recombination causing the break of ancestral haplotype
extents, which is different from the simple recombination process
in Voight et al. (2006) and others. Aswewill show in a later section,
when the selected mutant is at high frequency, the bias in the
Voight et al. (2006) method can be as high as ≈20%.

The aim of this paper is twofold: first, we propose a hidden
Markov model (HMM) that can explore the haplotype structure
of a genomic region, and the inferred haplotype structure can be
used to detect the existence of selection; second, we use a simpli-
fied population genetic model for the ancestral haplotype extent
inferred from the HMM to estimate the selection intensity and the
allele age. In the following sections, we first elucidate the details
of the method. We then use coalescent simulations to investigate
the power of detecting RPS and the accuracy of parameter estima-
tion. We apply the method to analyze several well-known genes
under RPS to demonstrate its performance, including the lactose
persistence gene (LCT ) in Northern Europeans, and KITLG, TYRP1
and OCA2, known to confer skin pigmentation in Northern Euro-
peans or East Asians.

2. Methods

In this section, we first present the HMM for identifying the ex-
tent of ancestral haplotypes. Two tests are further developed based
on the HMM for detecting RPS. We then describe a population ge-
netic model of hitchhiking. To be specific, we determine the allele
frequency of a selected mutant and the approximate distribution
of ancestral haplotype extents as a function of selection intensity
and time, and then use this model to infer the selection intensity
and the allele age of the selected mutant.

2.1. Data and parameters

The input data is a sample of n chromosomes (haplotypes) ran-
domly collected from a contemporary population and genotyped
at m SNP loci, and the phase of the chromosomes is assumed to
be known. The data X is an n by m matrix, with the entry Xi,j en-
coded as 0 or 1 to denote the allele type of the jth SNP on the ith
chromosome. The physical and genetic positions of the SNPs are
also assumed to be known. The parameter set, Γ = {s, t,A, λ},
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includes the selection coefficient (s), the position of the advanta-
geous mutant (λ), the mutant age (t), and the ancestral haplotype:
A = (A1, A2, . . . , Am), which is not observable. Here Aj denotes
the allele at the jth position of the ancestral haplotype. We use the
term ‘‘ancestral haplotype’’ to refer to the alleles in every SNP posi-
tion along the chromosome from which the advantageous mutant
first arose. Since we assume a hard sweep model for RPS, there ex-
ists only one ancestral haplotype. But the assumption can be easily
relaxed to model soft sweeps by allowing multiple ancestral hap-
lotypes.

2.2. A hidden Markov model

If we assume all the advantageousmutants in the current popu-
lation are descended from single copy of the selected mutant, then
recombination breaks the chromosomes and mixes the ancestral
haplotypewith the backgroundhaplotypes during the process, cre-
ating a ‘‘mosaic’’ pattern along the chromosomes. If we can record
the history and trace the origins for every piece of the chromo-
somes, the SNP positions of haplotypes in the current population
can be assigned into two classes: those descended from the an-
cestral haplotype and IBD (identical by descent) to the ancestral
haplotype; or those descended from one of the background haplo-
types. For the ith haplotype, we can label every SNP position with
the two latent states: Si,j ∈ {AH, BH}, where AH stands for ‘‘an-
cestral haplotype’’ and BH stands for ‘‘background haplotype’’. The
states are latent in the HMM as they are unobservable. The transi-
tions between the two adjacent latent states along every chromo-
some represent the extent of ancestral haplotype sharing, resulting
from the joint effects of recombination and hitchhiking. The extent
of the ancestral haplotypes is informative for learning the intensity
and duration (or allele age) of the selective process.

Consider a single chromosome i, and assume for now that we
know the mutant position λ for the illustration purpose. In our
model, λ is actually a parameter to be estimated by estimating
the likelihood ratio scores for each SNP as the putative mutant
position along the chromosome. Knowing the mutant position, we
divide the SNPs into two groups. We denote the markers to the
left ‘‘−1, −2, . . . ,−L’’ and the markers to the right ‘‘1, 2, . . . , R’’
where ‘‘1’’ and ‘‘−1’’ are adjacent to the mutant and so on. The
latent states of chromosome i are denoted as follows:

Si = {Si,−L, Si,(−L+1), . . . , Si,−1, Si,0, Si,1, . . . , Si,R}. (1)

In the following sections, we sometimes simplify the notation by
ignoring chromosome subscripts i when there is no confusion.

Starting from themutant position, the two sides of the chromo-
some form two Markov chains and the time steps of the Markov
chains are the SNP positions on the chromosome. The two chains
are independent conditioned on the states of the advantageous
mutant. Switching between the two latent states is the result of
recombination during the selection process. We assume the oc-
currence of historical recombination along a chromosome follows
a Poisson process. The transition matrix of the Markov chains is
summarized as follows:

P j+1(Sj+1 = AH|Sj = AH) = e−νdj,j+1; (2)

P j+1(Sj+1 = BH|Sj = AH) = 1 − e−νdj,j+1;

P j+1(Sj+1 = BH|Sj = BH) = 1;

P j+1(Sj+1 = AH|Sj = BH) = 0;

where the dj,j+1 is the genetic distance between the jth and the
(j+1)th SNP, and ν is the transition rate per genetic distance,which
is directly related to Eq. (11) in Section 2.5.

The model described above can be used to estimate the
probability of being IBDwith the ancestral haplotype. But the latent
states are hidden and unobserved. Instead, we observe the two
alleles of SNPs. If a position is IBD to the ancestral haplotype, and
we assume no mutation, the SNP allele, Xi,j, in that position will be
the same as the ancestral haplotype, Aj. If mutation is taken into
account, the conditional probability is

P(Xi,j|Aj, Si,j = AH) = (1 − µ) × ∆(Aj, Xi,j)

+ µ × (1 − ∆(Aj, Xi,j)), (3)

where µ is the ‘‘mutation rate’’ for a single SNP, and ∆ is the
indicator function:

∆(Xi,j, Aj) =


1 : Xi,j = Aj
0 : Xi,j ≠ Aj.

(4)

If a locus is IBD to a background haplotype, we can use two
distributions to describe the probability of observing allele 1 at
that locus. First, a simple binomial distribution is adopted. We use
P(Xi,j = 1|Si,j = BH) = Pj(1) to denote the probability of observ-
ing allele 1 at the jth position, and Pj(1) can be learned fromdata by
the EM algorithm (Durbin et al., 1998). Linkage disequilibrium or
the correlation between adjacent loci is not considered in this ap-
proach. Second, we model the dependence between adjacent loci
using a first orderMarkov chain (see Zheng andMcPeek, 2004, Tang
et al., 2006 for the applications of the first order Markov chains in
modeling linkage disequilibrium). The probability P(Xi,j = 1|Si,j =

BH, Xi,j−1) needs to be estimated from all haplotypes in the back-
ground haplotype groups. So far, we have obtained the probability
of observing an allele, xi,j, at a locus given its latent state, si,j, being
AH or BH , exi,j(si,j) (called emission probability in the HMM litera-
ture).

With the above emission probabilities, the probability of ob-
serving the data at a single position is obtained by summing over
all possible latent states of that locus. The likelihood function for
the chain to the right side of the mutant is estimated by recursion,
the so called forward algorithm. First, we define fi,j(si,j) = P(Xi,1,
Xi,2, . . . , Xi,j, Si,j = si,j), which is the joint probability for the ob-
served sequence up to jth step and the latent state at the jth step.
It is easy to get the recursion equation by the Markov property
(Durbin et al., 1998):

fi,j+1(si,j+1) = exi,j+1(si,j+1)


si,j

fi,j(si,j)P j+1(si,j+1|si,j). (5)

Next, starting from position 0, we set the initial condition as
fi,0(AH) = P(Si,0 = AH), which is the probability that the hap-
lotype is descended from the ancestral haplotype. Then by the re-
cursion equation we can get the likelihood function for the right
chain of chromosome i:

ln LRi =


si,R

fi,R(si,R). (6)

With a similar expression for the left chain, the likelihood function
for chromosome i is:

ln Li = ln LLi + ln LRi . (7)

We assume that different chromosomes are independent Markov
chains, so we can multiply the likelihood function for each chro-
mosome to form the full likelihood function for the entire data set:

ln L(X) =

n
i=1


j=L,R

ln Lji. (8)

This HMM and the dependencies among variables are graph-
ically illustrated in Fig. 1. Only the right chain of the ith chro-
mosome is shown in the figure. The shaded circles denote the
observed allele for every SNP position. The hollow circles represent
the missing data or unobserved variables, and the directed lines
represent probabilistic dependence among these variables.
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Fig. 1. Graphical representation of the hidden Markov model for right chains of
the haplotypes from a sample. The first row represents the ancestral haplotype and
the dash-lined box is the ith haplotype from the sample. The shaded circles denote
the observed data, which are the alleles for every SNP position. The hollow circles
stand for missing data or unobserved variables. The directed lines represent the
probability dependence between the two variables.

2.3. Optimization

The ancestral haplotype, A = {A−L, . . . ,A−1,A1, . . . ,AR}, is
an unknown parameter which needs to be reconstructed when
maximizing the likelihood function over parameters. One possible
scheme is to exhaustively search over the space of all the possible
haplotypes. This is infeasible for large genomic regions since
the possible number of haplotypes grows exponentially with the
number of SNPs. McPeek and Strahs (1999) used a branch-and-
bound algorithm to solve a similar problem in fine-scale disease
mapping (McPeek and Strahs, 1999). We use a candidate list
method. The candidate list method simply provides a candidate
list of ancestral haplotypes chosen from the data and enters into
the model each one of them as the ancestral haplotype when
estimating the likelihood function. We also tried the branch-
and-bound algorithm and another dynamic programming scheme,
and found that the candidate list method runs fast and can
recover the ancestral haplotype efficiently. Provided a candidate
ancestral haplotype, we can iteratively update the transition
probabilities and emission probabilities (Eqs. (2), (3)) using the
routine Baum–Welch/EM algorithm for HMM (see Durbin et al.,
1998 for details).

2.4. Hypothesis testing

With the ancestral haplotype identified from the HMM,we pro-
pose two tests to detect selection. The selected haplotype group
under RPS is expected to be more homogeneous than all the other
background haplotypes. The null hypothesis of neutrality corre-
sponds to the case that all the haplotypes are in a similar level
of homogeneity. Similar to the former section, we use a first or-
der Markov chain to model the linkage disequilibrium of all back-
ground haplotypes. As the neutrality and selection hypotheses are
not nested (the two are not overlapping at neutrality), we cannot
directly apply the asymptotic theory of likelihood ratio tests here.
Instead, we adopt two approaches for hypothesis testing:

• Empirical criterion for likelihood ratio scores. If we know
the population history, we can carry out coalescent simulations
to generate a set of neutral samples with allele frequency
matching that of the selected allele in the real data, apply the
HMM to obtain the likelihood and finally use the simulated
likelihood ratios to generate the null distribution for hypothesis
testing. With the advent of large-sample genomic sequencing
data and the development of efficient methods for inferring
population history, it is realistic to have fine-scale population
historymodels that can accurately approximate the true history
(Gutenkunst et al., 2009; Gravel et al., 2011; Lukić and Hey,
2012). In genome wide data analysis, we can also use the
empirical distribution of the likelihood ratio scores from the
genome scan, and pick the top signals (Nielsen et al., 2005;
Voight et al., 2006; Pickrell et al., 2009; Chen et al., 2010).

• Permutation test. Samples are randomly generated by permu-
tating the mutant alleles of haplotypes forM times to allow for
the shuffling of haplotype structure linked to the mutant lo-
cus. For each of the M samples, the HMM is used to estimate
the likelihood ratio, which is used to generate the null distri-
bution for the test. Since computation is intensive for simulat-
ing large number of samples by permutation, this approach is
feasible only for analyzing data from a local region. Also note
that, during the permutation, we only shuffle the mutant alle-
les or the labels of each haplotype (belonging to the selected
or neutral haplotype groups), and thus the linkage disequilibria
among marker loci are not broken.

2.5. A population genetic model for recent positive selection

The hidden Markov model presented in Section 2.2 is used to
identify the ancestral haplotype and detect the breaking points of
the ancestral haplotypes retained around each putative selected
mutant. The identified ancestral haplotype extent cannot only be
used to detect the existence of selection, but also to infer the
parameters, such as, the section intensity s and the duration of
the selective process t . In this section, we describe the population
genetic model needed for parameter inference, and in the next
section, we show how the model can be used to infer the two
parameters.

Consider a selective sweep that starts with a single copy of the
selected allele (a.k.a. a hard sweep,Hermisson andPennings, 2005).
Assume that the selected locus has two alleles A and a,with A being
the selected allele. Let yt be the allele frequency of the selected al-
lele A at time t . The frequency trajectory of A over time is random.
But when selection is strong enough, we can ignore the random-
ness of the allele frequency trajectories at the very beginning stage
of the selection, and thus the trajectory yt can be approximated
by a deterministic curve (Stephan et al., 1992; Braverman et al.,
1995). The deterministic process of the selected mutant and the
hitchhiking effect were well studied (Maynard Smith and Haigh,
1974; Ohta and Kimura, 1975; Stephan et al., 1992; Durrett and
Schweinsberg, 2004). We demonstrate here how the classic theory
can be adopted to obtain the allele frequency of the advantageous
mutant as a function of the selection intensity and allele age, and
the probability distribution of ancestral haplotype extents during
the selective process.

Assume an additive model for selection, and let the selective
advantage of the allele A be s. The change of allele frequency in
one generation follows the logistic differential equation (Ohta and
Kimura, 1975):

dyt
dt

= syt(1 − yt). (9)

This logistic equation has a solution:

yt =
y0

y0 + (1 − y0)e−st
, (10)

with y0 being the initial allele frequency of the mutant in genera-
tion 0, which can be chosen to be a small value, such as, 1/Ne, for a
hard sweep process (Kaplan et al., 1988; Stephan et al., 1992).

Now we show how to obtain the distribution of the extent
of ancestral haplotypes. Consider a continuous segment between
the mutant and a biallelic neutral marker. We use [AB] to denote
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a segment of ancestral haplotype with hidden states A and B
being the end points, and [A−] a segment with hidden state A
at one end while the other end point of the ancestral fragment
arbitrary. Let PB|A(t) be the population frequency of fragment [AB]
among the A haplotypes at time t . Assume that A first appears
as on a single haplotype [AB] in the population, and all the other
haplotypes are [ab], that is, the two loci are in absolute linkage
disequilibrium. Note that both A and B take value of ‘‘AH ’’ in this
context. According to Ohta and Kimura (1975), the proportions of
chromosomes segments [AB] in the ‘‘A’’ group and [aB] in the ‘‘a’’
group at time t are respectively (Ohta and Kimura, 1975):

PB|A(t) = 1 − r
 t

0

(1 − y0)e−ru−su

y0 + (1 − y0)e−su
du, (11)

and

PB|a(t) = r
 t

0

y0e−ru

y0 + (1 − y0)e−su
du, (12)

where r is the recombination fraction between two loci (see Ohta
and Kimura, 1975 for details). The above two equations provide
the probability distribution for a retained ancestral haplotypewith
A/a and B/b be the two ends at any time t in the selective sweep
process. But since the computation involves integration without
analytical form we use the following simple approximation. For
a random ancestral haplotype [AB], if it recombines with any
[A−] haplotype during the duration [0, t], it does not change the
population frequency PB|A(t). The only possible change comes from
recombinationwith a haplotype from the neutral haplotype group.
The expected number of effective crosses between haplotype [AB]
and any [a−] haplotype is (Durrett and Schweinsberg, 2004; Chen
and Slatkin, 2013):

C = r
 t

0
(1 − y(u))du

= r

t −

1
s
ln(1 − y0 + esty0)


. (13)

Assume that the number of effective crossovers occurring to ances-
tral haplotype [AB] during the time interval [0, t] follows a Poisson
distribution. Then the probability of no effective recombination be-
tween the [AB] haplotype and any [ab] haplotypes is

PB|A(t) = e−rt(1 − (1 − est)y0)r/s. (14)

Eq. (14) provides a very accurate approximation for Eq. (11) for
awide range of r and s values. For example,when y0 = 0.0001, t =

1200, r = 0.001 and s = 0.01, PB|A(t) is 0.5926 from Eq. (11), and
is 0.5995 from Eq. (14).

Let 1rR be the recombination fraction between locus BR and
BR+1, the probability for the break point occurring at position BR
is

P(BR) = e−rt(1 − (1 − est)y0)r/s1rR

t −

1
s
ln(1 − y0 + esty0)


.

(15)

Note that in Eqs. (14) and (15), when st is small, either the selective
process is at the early stage or the selection intensity is weak, the
term (1 − (1 − est)y0)r/s ≈ 1, and thus similar to the case under
neutrality (Voight et al., 2006; Chen and Slatkin, 2013). However,
if st is large, the term cannot be ignored. For example, for the same
parameter setting as above (r = 0.001, s = 0.01, y0 = 0.0001,
and t = 1200), methods which ignore the term, such as the one
presented in Voight et al. (2006), can cause a relative bias ≈18%
(Voight et al., 2006).
2.6. Parameter estimation

The ancestral haplotype extents identified by the HMM can be
used to estimate the parameters by the importance sampling ap-
proach in Chen and Slatkin (2013). Here we show how to estimate
the two parameters with a simple but computationally more effi-
cient approach, using the population genetic model presented in
the former section.

We take the break points for each chromosome carrying the
selected allele,


Bj,L, Bj,R, 1 ≤ j ≤ nsel


, as the input data, where Bj,L

and Bj,R are the left and right ends of the jth ancestral haplotype,
and nsel is the number of chromosomes in the sample carrying the
selectedmutant. Sincewe assume that recombination occurs along
the chromosomes following a Poisson process, the probability for
an ancestral haplotype retained between Bj,L and Bj,R follows Eq.
(15). We then write the likelihood for the nsel chromosomes as:

ln L =

nsel
j=1

ln(P({Bj,L, Bj,R}))

=

nsel
j=1

−r{Bj,L,Bj,R}t +
r{Bj,L,Bj,R}

s
ln


1 − (1 − est)y0


+ ln1rL + ln1rR + ln


t −

1
s
ln


1 − (1 − est)y0


. (16)

Furthermore, we assume the frequency of the selected mutant in
the current generation is known (estimated from the sample, if
the sample size is sufficiently large), and a deterministic instead
of random frequency trajectory of the mutant (Eq. (10)), which is
reasonable under strong selection. From Eq. (10), we obtain the
deterministic relation between s and t:

t =
1
s
ln

yt(1 − y0)
y0(1 − yt)


. (17)

This expression can be substituted into Eq. (16) to reduce the like-
lihood as a function of a single parameter s. We can easily obtain
the estimate ŝ, and then get t̂ from Eq. (17).

3. Results

3.1. Power to detect selection

We used the coalescent simulator msms to generate haplotype
samples under RPS, and used the samples to evaluate the power
of this method in detecting RPS, and the accuracy and precision
of selection coefficient estimation (Ewing and Hermisson, 2010).
msms adopts a structured coalescent scheme tomodel the effect of
a selective sweep on the genealogies of nearby loci. The allele fre-
quency of the mutant at present was chosen to be 0.40 and 0.80,
representing selected mutants with moderate and high frequen-
cies. We simulated a sample of 100 haplotypes spanning a region
of 1Mb, with the selected mutant located in the middle. The point
mutation rate was set to be 1.0 × 10−8 per site per generation
and the recombination rate 1.0 × 10−8. For each level of selec-
tion coefficient (2Ns = 50, 100, 200, 300, 500, 1000), 200 sam-
ples were generated. To mimic the effect of phase inference for
genotype data, haplotypeswere randomly paired to simulate geno-
type for each individual, and the fastPHASE software was applied
to the simulated genotype data to infer haplotypes (Scheet and
Stephens, 2006). The output haplotypes were used to evaluate the
power of the tests. To give a criterion for hypothesis testing, we
generated samples in the neutral case with the same parameters
except that the selection coefficient s = 0.0. 2000 samples were
generated such that the allele frequency of the central SNP was
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Fig. 2. The power of detecting selection for a range of selection intensities. The
derived allele frequencies of the selected mutant are (A) 0.80 (B) 0.40. The curve
with squares is the proportion of significant results by the likelihood ratio test of
the HMM method; the curve with circles is for the iHS test by Voight et al. (2006);
and the curve with diamonds is for the composite likelihood ratio test by Nielsen
et al. (2005); The 1% cutoff level for the three tests were generated by simulation by
assuming the demographic history of the population is known.

the same as in the selection case. The HMM method was then ap-
plied to these neutral samples and the 99th percentile score was
recorded as the criterion for significance, which is equivalent to
controlling the type-I error to be under 1%. For samples simulated
with the given setting (the allele frequency of the selected allele
and the selection coefficient), the HMM method was applied, and
the likelihood ratio scorewas recorded and compared to the signif-
icance criterion. The proportion of samples with a likelihood ratio
score that exceeded the threshold was recorded as the power of
the method for the setting.

We compared the performance with two existing popular
methods: the allele frequency spectrum-based CLR test by Nielsen
et al. (2005), and one long-range haplotype method: the iHS test
by Voight et al. (2006). The null distributions for the two statistics
were also generated by applying to the simulated data under
neutrality, similar to the HMMmethod.

All the results are plotted in Fig. 2. Thehaplotype basedmethods
(HMMand iHS) are overallmore powerful than the allele frequency
spectrum-based method for the two simulated settings (allele
frequencies: 0.80 and 0.40), and the difference in performance is
A

B

Fig. 3. The accuracy of the estimation of selection coefficient for selected mutants
with the derived allele frequencies 0.80 (A) and 0.40 (B). The X-axis shows the true
values of selection coefficients in the simulations (s = 0.005, 0.01, 0.05). The Y -
axis shows the inferred selection coefficients. The box plots are estimated values
for 200 simulations. Bars inside the box indicate the median of the estimates and
the two borders of the boxes correspond to the first and the third quantiles of the
estimates.

more apparent when the selected allele has frequency 0.4. This is
not surprising and consistent with the previous conclusion (Sabeti
et al., 2002), since the allele frequency spectrum-based method
models the hitch-hiking effects of a fixed allele instead of a RPS.
The haplotype-based methods, the HMMmethod and the iHS test,
have similar power for both parameter settings.

3.2. Precision and accuracy of the parameter estimation

We also evaluated the accuracy of the parameter estimation.
Box plots of the estimated selection coefficients stratified by the
true values of selection coefficients from 200 simulations using
the above procedures are shown in Fig. 3. The horizontal dashed
lines indicate the true selection coefficients in simulation. The
bars inside the boxes indicate the medians and the two borders
of the box correspond to the first and the third quantiles of the
estimates. The medians of the boxes match the true values well,
demonstrating that the estimates are accurate. The inter quantile
range (IQR) indicates the precision of the estimates for selection
coefficients.
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Fig. 4. The accuracy of the estimation of allele age for selected mutants with
the derived allele frequencies 0.80 (A) and 0.40 (B). The X-axis shows the values
of selection coefficients in the simulations (s = 0.005, 0.01, 0.05). The Y -axis
shows the log2 (inferred age/true age) values. The box plots are estimated from 200
simulations. Bars inside the box indicate the median of the estimates and the two
borders of the boxes correspond to the first and the third quantiles of the estimates.

Box plots of the estimated allele ages stratified by the true
values of selection coefficients from 200 simulations are shown
in Fig. 4. The inferred allele ages were from applying the HMM
method to the simulated data. The true allele ages of the simulated
samples were obtained by outputting the allele frequency trajec-
tories during simulations. Since the allele ages vary among sim-
ulated samples, we present the log2 of the ratio of inferred allele
age t̂ over the true allele age t: log2(

t̂
t ). From Fig. 4, we can see the

estimates of allele ages for the tested selection coefficient levels
s = 0.005, 0.01 and 0.05 are quite good. In general, the estimates
are unbiased, and most of the ratios are within the 2 times and 0.5
times range.

We compared the performance of the HMM method with
two existing methods: the forward simulation method presented
in Beleza et al. (2013) (referred to as ForSim in the following
paragraphs), and the importance sampling-based method by Chen
and Slatkin (2013) (referred to as IS-Age). We applied the two
methods to the same simulated data. The inferred selection
intensity and allele age were recorded, and the mean and root-
mean-square error (RMSE) of the inferred parameters are shown
in Tables 1 and 2 for the comparison with the HMMmethod.
Table 1
The comparison of the three methods for estimating selection intensity. The
numbers in the table are the mean and RMSE of the inferred selection intensity by
the three methods. HMM estimator: the method of this paper; ForSim: the forward
simulation method by Beleza et al. (2013); IS-Age: the importance sampling-based
method by Chen and Slatkin (2013).

HMM estimator ForSim IS-Age
Mean RMSE Mean RMSE Mean RMSE

freq = 80%
s = 0.005 0.0059 0.0015 0.0206 0.0187 0.0055 0.0045
s = 0.01 0.0108 0.0022 0.0269 0.0172 0.0114 0.0129
s = 0.05 0.0465 0.0070 0.0265 0.0236 0.0381 0.0131
freq = 40%
s = 0.005 0.0054 0.0026 0.0193 0.0147 0.0075 0.0038
s = 0.01 0.0110 0.0039 0.0213 0.0116 0.0127 0.0058
s = 0.05 0.0478 0.0086 0.0207 0.0294 0.0325 0.0189

Table 2
The comparison of the three methods for estimating allele age. The numbers in
the table are the mean and RMSE of log2(inferred allele age/true allele age) by the
three methods. HMM estimator: the method of this paper; ForSim: the forward
simulation method by Beleza et al. (2013); IS-Age: the importance sampling-based
method by Chen and Slatkin (2013).

HMM estimator ForSim IS-Age
Mean RMSE Mean RMSE Mean RMSE

freq = 80%
s = 0.005 −0.0410 0.3637 −1.2113 1.2313 0.033 0.7255
s = 0.01 −0.0190 0.3053 −0.2830 0.4125 −0.0984 0.6384
s = 0.05 0.1469 0.3253 1.7866 1.8039 0.2719 0.4296
freq = 40%
s = 0.005 −0.0450 0.7080 −0.4826 0.6284 −0.3158 0.6331
s = 0.01 −0.0621 0.5949 0.2720 0.4275 −0.1586 0.8631
s = 0.05 0.2884 0.6554 2.1822 2.1994 0.4936 0.6391

Overall, the HMM method outperforms ForSim and IS-Age for
the tested parameter range (0.005 ≤ s ≤ 0.05, see Tables 1 and 2).
The ForSim results show large bias. ForSim only simulates ≤8
markers (four on each side of the selected mutant) since the for-
ward simulation is computationally intensive. ForSim adopts a
rejection sampling approach to match the real data and simu-
lated data. Instead of using the full sample configuration, the im-
plementation of Beleza et al. (2013) only chooses two summary
statistics for the rejection sampling: the allele frequencies of the
selectedmutants, and the frequencies of thewhole intact ancestral
haplotypes across all markers. This simplification may explain the
bias and big variance of their estimate. However, increasing sum-
mary statistics numbers to improve the accuracy may be unreal-
istic, since the acceptance rate of the rejection sampling becomes
extremely low.

IS-Age was expected to performs better than or equally with
HMM. The population genetic model for parameter inference in
HMM is simplified and approximated with a deterministic process
(see Eq. (9)). When selection is strong (e.g., 0.005 ≤ s ≤ 0.05),
the approximation is valid, therefore similar results are expected
for the two approaches. However, we observed that the results of
IS-Age show higher bias and RMSE than HMM for the tested pa-
rameter range. It may be due to the following down-sampling pro-
cedures when implementing IS-Age. The simulated data was too
large to be analyzed by IS-Age, and to implement the analysis, we
reduced the size of each simulated sample by randomly choosing
20 haplotypes, and further randomly dropping 50% SNPs. This pro-
cedure may reduce sample information and cause potential bias.

In addition to the difference in accuracy and precision of param-
eter estimation, the computational efficiency of the three methods
is also apparent. ForSimof Beleza et al. (2013) uses forward simula-
tion to generate a population of haplotypes, which evolves by gen-
erations. The acceptance rate of the rejection algorithm adopted by
their method is very low, even when only two summary statistics,
instead of the full sample configuration, are used in the rejection
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Table 3
The top 20 regions of the human genome based on the genome-wide scan on the ASN data from HapMap III using the HMM test.

Popul Chr Positions (Mb) Genes

ASN

3 49.10–50.09 AMIGO3, AMT, APEH, BSN, C3orf54, C3orf60, C3orf62, CAMKV, CCDC36, CCDC71, DAG1, DALRD3, GMPPB, GPX1, IHPK1,
IMPDH2, KLHDC8B, LAMB2, LOC389118, LOC646498, MON1A, MST1, NICN1, PH-4, QARS, QRICH1, RBM5, RBM6, RHOA,
RNF123, SEMA3F, TCTA, TRAIP, UBE1L, USP19, USP4, WDR6

6 27.44–28.04 LOC346157, ZNF184, HIST1H, OR2B2, OR2B6, PRSS16
17 24.96–25.85 ANKRD13B, BLMH, CCDC55, CORO6, CPD, DKFZP434O047, EFCAB5, GIT1, GOSR1, LOC116236, SLC6A4, SSH2, TAOK1,

TMIGD1, TP53I13
2 108.82–109.34 EDAR, FLJ32745, LOC729164, RANBP2

10 73.74–74.29 ASCC1, C10orf104, CBARA1, CCDC109A, DDIT4, DNAJB12, OIT3, PLA2G12B
14 65.90–66.78 ATP6V1D, C14orf54, GPHN, MGC88374, MPP5
6 25.59–26.77 ABT1, BTN2A1, BTN2A2, BTN2A3, BTN3A1, BTN3A2, BTN3A3, HFE, HIST1H, HMGN4, LRRC16, SCGN, SLC17A1, SLC17A2,

SLC17A3, SLC17A4, TRIM38, ZNF322A
1 92.53–93.40 BTBD8, C1orf146, C1orf82, CCDC18, EVI5, FAM69A, GFI1, GLMN, MTF2, RPL5, TMED5
3 137.28–138.0 MSL2L1, PPP2R3A, MSL2L1, PCCB, PPP2R3A, NCK1, STAG1, TMEM22

15 61.35–62.52 APH1B, CA12, CSNK1G1, DAPK2, FBXL22, HERC1, KIAA0101, RAB8B, TRIP4, USP3, ZNF609
4 144.48–144.56 GAB1, SMARCA5
7 126.62–126.88 GRM8, ZNF800
2 72.92–72.99 EMX1, SFXN5, SPR
1 172.94–173.09 RABGAP1L, GPR52

11 48.22–48.26 OR4B1, OR4C3, OR4S1, OR4X1, OR4X2, PTPRJ
2 84.59–84.74 FLJ37357, SUCLG1, LOC388965
6 18.36–18.62 AOF1, DEK, IBRDC2, TPMT
2 125.20–125.33 CNTNAP5

20 34.14–34.26 C20orf152, C20orf4, EPB41L1
20 24.79–24.85 ACSS1, C20orf3, CST7
10 94.42–94.98 CYP26A1, CYP26C1, EXOC6, FER1L3, HHEX, IDE, KIF11
1 153.58–153.60 ASH1L, C1orf104, C1orf2, CLK2, FDPS, HCN3, PKLR, RUSC1, SCAMP3
sampling. IS-Age uses importance sampling andmakes several effi-
cient approximations to reduce the state space of the genealogical
process, but it still requires a down-sampling step to reduce sam-
ple size and marker numbers. Analyzing a single sample with IS-
Age or ForSim typically takes several days. Both ForSim and IS-Age
are computationally too intensive, while the HMM method only
takes minutes to analyze a sample, and thus is applicable to ana-
lyze genome-wide data.

3.3. Genome scan on HapMap data

We applied the method to analyze the HapMap Phase III data.
The HapMap Phase III data contains genome wide SNP data from
11world populations. We focused on the threemajor populations:
the Utah residents with Northern and Western European ancestry
from the CEPH collection (CEU), the Han Chinese and Japanese
populations from East Asia (ASN), and the Yoruban Africans from
West Africa (YRI). The phased haplotype data and SNP positions
were downloaded from the HapMap Ftp server. The top 20 most
significant regions for the three populations from the genome
scans are listed in Tables 3–5.

Some most well-known examples of genes under RPS are
among the top lists, and are highlighted in Tables 3–5 with bold
type fonts. For example, as shown in Fig. 5, the 135–136.5 Mb of
Chromosome 2 is one of the most extreme signal in the CEU pop-
ulation. The Lactase gene (LCT ) is located in the region, and is a
famous example of genes under RPS in human populations (Swal-
low, 2003; Bersaglieri et al., 2004). The ectodysplasin A receptor
(EDAR) was shown to be one of most significant signals in the
ASN population. One non-synonymous mutation of the EDAR gene
(EDARV370A) was absent in other populations, but nearly fixed in
the ASN population. Molecular experiments have shown that the
mutant is functional for hair thickness and the increase of active
eccrine gland numbers, andmay contribute to the local adaptation
to humid environments in East Asia (Bryk et al., 2008; Kamberov
et al., 2013). The other well known examples include pigmenta-
tion genes, such as, KITLG in CEU; genes related to resistance to in-
fectious disease, such as, HLA and IL3; skeletal development genes,
such as, GDF5, and genes related to brain development, such as,
Fig. 5. The plot of likelihood ratio scores along chromosome 2 of the Northern
European population (CEU) of HapMap III. Lactase gene is located around 136 Mb.

SLC6A4 and SNTG1. The extensive identification ofwell knownRPS-
target genes demonstrates that the hiddenMarkovmethod can ef-
ficiently identify the haplotype structure pattern caused by a RPS.

Notice that most of these top regions are identified as targets of
RPS by one of former studies (e.g., Akey et al., 2002, Sabeti et al.,
2007, McEvoy et al., 2009, Pickrell et al., 2009, Chen et al., 2010,
Grossman et al., 2013, etc.). We also carried out a genome-wide
analysis using the iHS test by Voight et al. (2006). The iHS scores for
all these regions of Tables 3–5 are among top 1% of genome level.
This is not surprising, since these most significant regions should
be identifiable by variousmethods. But interestingly,we also found
that the ranking of the signals identified by the HMM method is
different from that based on the iHS method.

The first example is the 49.10–50.09Mb region of Chromosome
3 in the ASN population. This region is one of the most significant
signals of RPS in ASN genomes, while was not identified as top
signals using iHS. We checked the haplotype structure using the
HapMap web server and noticed that the ASN haplotypes of this
region indeed show very significant haplotype structure related
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Table 4
The top 20 regions of the human genome based on the genome-wide scan on the CEU data from HapMap III using the HMM test.

Popul Chr Positions (Mb) Genes

CEU

6 30.0–31.68 ABCF1, AIF1, APOM, ATP6V1G2, BAT, C6orf134, C6orf136, C6orf15, C6orf205, C6orf47, CCHCR1, CDSN, CSNK2B, DDR1,
DHX16, DPCR1, FLJ45422, FLOT1, GNL1, GTF2H4, HCG27, HCG9, HCP5, HLA, IER3, LST1, LTA, LTB, LY6G5B, LY6G5C,
MDC1, MICB, MRPS18B, NCR3, NFKBIL1, NRM, POU5F1, PPP1R10, PPP1R11, PRR3, PSORS1C1, RNF39, RPP21, SFTPG,
TCF19, TNF, TRIM, TUBB, VARSL, ZNRD1

2 135.43–136.51 ACMSD, CCNT2, CXCR4, DARS, LCT, MCM6, R3HDM1, RAB3GAP1, UBXD2, YSK4, ZRANB3
10 73.88–74.06 CBARA1, CCDC109A, DNAJB12
14 66.08–66.36 GPHN, MGC88374, C14orf54
10 74.31–74.36 CCDC109A, OIT3, P4HA1, PLA2G12B
5 130.75–131.36 FNIP1, RAPGEF6, ACSL6, CSF2, IL3, CDC42SE2
3 51.06–51.33 DOCK3, ARMET, RBM15B, VPRBP
1 172.56–172.90 GPR52, RABGAP1L
1 35.94–36.03 CLSPN, EIF2C4, FLJ38984, PSMB2, EIF2C1

17 17.62–17.89 ATPAF2, C17orf39, DRG2, LRRC48, MYO15A, RAI1, SREBF1, TOM1L2
15 41.51–41.64 ADAL, CATSPER2, CKMT1B, HISPPD2A, LCMT2,MAP1A, STRC, TP53BP1, ZNF690
11 48.51–49.92 OR4A47, OR4C12, OR4C13, FOLH1
4 52.66–52.69 LOC339977, SGCB, SPATA18

15 69.95–70.28 BRUNOL6, GRAMD2, MYO9A, PARP6, PKM2, SENP8, NR2E3, THSD4
2 178.06–178.26 AGPS, PDE11A, TTC30A, TTC30B
5 109.97–110.01 SLC25A46

12 87.53–87.57 KITLG
12 110.89–111.30 C12orf30, ERP29, MAPKAPK5, TMEM116, TRAFD1, PTPN11, RPL6
20 33.49–34.04 C20orf152, PHF20, RBM39, SCAND1, C20orf44, CEP250, GDF5
8 51.52–51.53 SNTG1
Table 5
The top 20 regions of the human genome based on the genome-wide scan on the YRI data from HapMap III using the HMM test.

Popul Chr Positions (Mb) Genes

YRI

6 33.13–33.26 B3GALT4, BRD2, COL11A2, HLA, HSD17B8, RING1, RPS18, RXRB, SLC39A7, VPS52, WDR46
14 65.93–66.35 GPHN, MGC88374, MPP5
9 94.19–94.60 ASPN, ANKRD19, BICD2, CENPP, ECM2, IARS, IPPK, NOL8, OGN, OMD, ZNF484
3 47.60–48.33 CAMP, CDC25A, CSPG5, FBXW12, NME6, PLXNB1, SCAP, SMARCC1, SPINK8, TMEM103, ZNF589
3 51.17–51.32 ARMET, DOCK3, RBM15B, VPRBP
4 52.39–52.45 DCUN1D4, LOC339977, SGCB, SPATA18
4 48.44–48.49 FRYL, OCIAD1, OCIAD2
7 65.29–65.48 ASL, GUSB, KCTD7, RABGEF1, RCP9, TPST1, LOC285908

10 104.57–104.63 AS3MT, C10orf26, C10orf32, CNNM2, CYP17A1, SFXN2
11 49.15–50.03 FOLH1, OR4C12, OR4C13
8 99.83–99.86 STK3, VPS13B
3 138.08–138.16 IL20RB, NCK1, TMEM22
4 100.21–100.28 ADH4, ADH5, ADH6, METAP1
8 113.94–113.94 CSMD3
6 63.92–63.97 GLULD1

14 59.56–59.57 C14orf135
13 56.55–56.55 FLJ40296
7 68.65–68.90 AUTS2

19 43.09–43.12 SIPA1L3
11 46.91–46.95 C11orf49, CKAP5, LRP4
1 172.16–172.18 DARS2, RC3H1, SERPINC1, ZBTB37
1 181.24–181.38 C1orf14, LAMC1, LAMC2

13 57.08–57.09 PCDH17
to a RPS (see Fig. S1). There are multiple genes located in this
region. Among them, MST1 (macrophage stimulatory protein 1)
is functional for inflammation and wound healing; APEH (APH), a
serine peptidase, is known for the ‘‘degradation of bacterial peptide
breakdown products in the gut to prevent excessive immune
response’’ (Nguyen and Pei, 2005; Raelson et al., 2007). There
are several SNPs identified to be associated with Crohn’s disease
by GWAS studies (Raelson et al., 2007). The exact reason for
this region being under strong RPS remains unclear, and requests
further biological studies. A second example is the gene SLC25A46.
Its HMM score indicates very significant haplotype structure in
CEU caused by a RPS (see Fig. S2). This region was identified as
top signals in several other studies based on different approaches,
including Chen et al. (2010) and Grossman et al. (2013). The
mechanism for it being under RPS is not reported in former
literature yet.
3.4. Lactase in Northern Europeans

Individuals carrying the lactose tolerance allele in pastoral pop-
ulations gain some selective advantage for the nutrition provided
from dairy. One group of haplotypes in the Northern Europeans
has a frequency of ≈77%, and extends for >1 Mb. This is con-
sistent with the signals of haplotype structure caused by a RPS.
Bersaglieri et al. (2004) used the decay of linkage disequilibrium in
the Northern European population to estimate the age of the lac-
tose tolerance associated haplotype to be 2538–23,954 years ago.
They further estimated the selection coefficient of the selectedmu-
tant based on the allele age, the allele frequency at present, and a
discrete-generation Wright–Fisher model to be 0.014–0.15.

We focused our analysis on the 5 Mb region of the LCT gene
from the CEU population of HapMap III (Fig. 5). The genetic dis-
tances among SNPs are needed for inferring selection coefficient.
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Fig. 6. The inferred ancestral states for LCT gene region for the Northern European
samples from HapMap. Each row represents a single haplotype and each column
corresponds to a SNP position. Blue (dark) denotes being inherited by descent
from the ancestral haplotype and cyan (light) denotes background haplotypes.
The putative mutant is chosen to be −13910C/T (rs4988235), and its position is
indicated by the vertical line. (For interpretation of the references to color in this
figure legend, the reader is referred to the web version of this article.)

We used the Oxford genetic map (Myers et al., 2005), which was
also downloaded from the HapMap web page. The genetic posi-
tion of each SNP was obtained by interpolation. The two SNPs,
−13910C/T (rs4988235) and −22018 G/A (rs182549) are believed
to be functionally important for lactase persistence in Northern
Europeans. We treated rs88235 as the selected mutant when ap-
plying the HMM method. We successfully identified the ancestral
haplotype in the vicinity of the putative mutant. The posterior
probabilities of being at ancestral state for each SNP along the chro-
mosome are inferred. When it is larger than 0.5, the position is
labeled as being descended from the ancestral haplotype. The in-
ferred ancestral states of each SNP along the 120 chromosomes are
presented in Fig. 6. The ancestral haplotype regions are dark blue
and the backgroundhaplotypes are cyan. In agreementwith former
studies, we found the extent of ancestral haplotypes to be more
than 1Mb. Some ancestral haplotypes are as large as 2–3 Mb. We
then used the method in Section 2.6 to estimate the selection co-
efficient to be 0.0560 (95% CI: 0.0486–0.0654), and the age of the
selected allele to be 5350 (95% CI: 4580–6163) years, assuming a
generation time of 29 years. The 95% confidence intervals were ob-
tained by bootstrapping over haplotypes. This result is consistent
with Bersaglieri et al. (2004), indicating that LCT is one of the genes
known to be under the strongest selection effect in humans.

3.5. Skin pigmentation genes in Northern Europeans and East Asians

We also investigated three skin pigmentation genes, KITLG and
TYRP1 in Northern Europeans, and OCA2 in East Asians. Light
skin color was favored in Northern Europe and East Asia since
it facilitates vitamin D synthesis at higher latitude (Jablonski
and Chaplin, 2000). Genes related to the melanosome biogene-
sis or the melanin bio-synthetic pathways, including TYR, TYRP1,
OCA2/HERC2, SLC45A2, SLC24A5, SLC24A4, MC1R, ASIP, KITLG, IRF4
and TPCN2, confer light skin color and show signals of strong RPS
(Lao et al., 2007). The evolutionary mechanism of skin pigmenta-
tion is at least partially different in Northern Europeans and East
Asians. SLC24A5, KITLG and TYRP1 are believed to play important
roles in light skin color evolution in Northern Europeans (Lao et al.,
2007). In a recent study on pigmentation genes, Beleza et al. (2013)
used forward simulation and rejection algorithm to get an estimate
Fig. 7. The inferred ancestral states for KITLG gene region for the Northern
European samples from HapMap. Each row represents a single haplotype and
each column corresponds to a SNP position. Blue (dark) denotes being inherited
by descent from the ancestral haplotype and cyan (light) denotes background
haplotypes. The putative mutant is chosen to be rs642742, and its position is
indicated by the vertical line. (For interpretation of the references to color in this
figure legend, the reader is referred to the web version of this article.)

of the age. They found that selection on KITLG happened ≈30,000
years ago, after the out-of-Africa migration; and the selective
sweep that acted on anEuropean-specific alleles at TYRP1, occurred
within the last 11,000–19,000 years, after the first migrations of
modern humans into Europe. The mechanism of skin color is less
studied in East Asians. A recent association study demonstrated
that one non-synonymous polymorphism rs1800414 (His615Arg)
of OCA2 is important for the skin pigmentation in East Asians (Ed-
wards et al., 2010). The time and intensity of selection on the OCA2
gene in East Asians have not been investigated yet.

We applied the HMM method to these three gene regions,
which are downloadable from HapMap II. Following the results
from Beleza et al. (2013), we chose rs642742 for KITLG and
rs2733831 for TYRP1 as the putative selected mutants in Northern
Europeans. The ancestral states determinedby the posterior proba-
bilities of being descended from ancestral haplotypes for each po-
sition along the 120 CEU chromosomes are plotted in Figs. 7 and
8. Our estimate of selection coefficient for KITLG is 0.0190 (95%
CI: 0.0088–0.0297), and the allele age is 16,480 (95% CI:10,540–
35,580) years, assuming a generation timeof 29 years. The estimate
of selection coefficient for TYRP1 is 0.0240 (95% CI: 0.0154–0.0343),
and the allele age is 11,930 (95% CI:8350–18,590) years. Our esti-
mates are roughly consistent with Beleza et al. (2013), and sup-
ported the hypothesis that the onset of selection on TYRP1may be
more recent than KITLG, and likely after the split of Eurasian pop-
ulations. Our estimate of the onset time of selection on KITLG is
younger than Beleza et al. (2013), and does not support the con-
clusion that it was selected before the separation of Eurasian pop-
ulations.

We also inferred the time and intensity of selection on OCA2
in East Asians by assuming the non-synonymous polymorphism
rs1800414 (His615Arg) as the functional mutant under RPS. The
haplotype structure of theOCA2 region for the 90Han Chinese hap-
lotypes is presented in Fig. 9. The estimated selection coefficient is
0.0265 (95% CI: 0.0179–0.0350), and the allele age is 10,660 (95%
CI:8070–15,780), which implies that natural selection on OCA2 in
East Asians started independently after the separation of Eurasian
populations, and may suggest distinct adaptation mechanisms of
skin pigmentation in East Asian and Northern Europeans.
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Fig. 8. The inferred ancestral states for TYRP1 gene region for the Northern
European samples from HapMap. Each row represents a single haplotype and
each column corresponds to a SNP position. Blue (dark) denotes being inherited
by descent from the ancestral haplotype and cyan (light) denotes background
haplotypes. The putative mutant is chosen to be rs2733831, and its position is
indicated by the vertical line. (For interpretation of the references to color in this
figure legend, the reader is referred to the web version of this article.)

Fig. 9. The inferred ancestral states for OCA2 gene region for the Han Chinese
(East Asian) samples from HapMap. Each row represents a single haplotype and
each column corresponds to a SNP position. Blue (dark) denotes being inherited
by descent from the ancestral haplotype and cyan (light) denotes background
haplotypes. The putative mutant is chosen to be rs1800414, and its position is
indicated by the vertical line. (For interpretation of the references to color in this
figure legend, the reader is referred to the web version of this article.)

4. Discussion

We present an HMM method for detecting recent positive se-
lection and inferring selection intensity and allele age when there
was a selective sweep. We have shown that the HMM method is
effective in capturing the multilocus haplotype structure caused
by a RPS. Using coalescent simulations, we showed that the HMM
method has more power to detect selection under a range of
selection parameters than the allele frequency spectrum-based
methods, such as the CLR test (Nielsen et al., 2005).Wealso demon-
strated that its estimates of selection coefficients and allele ages
are quite accurate for strong selection. We further illustrated the
use of the method by doing a genome scan on the HapMap III data,
and analyzing four genes known as the targets of RPS: the LCT gene,
which conferred to lactose persistence in Northern Europeans, and
KITLG, TYRP1 and OCA2, which are related to the skin pigmentation
adaptation in Northern Europeans and East Asians. The inferred
selection coefficients, ancestral haplotypes and other parameters
are consistent with former population genetic studies and human
history.

In coalescent likelihood methods, the randomness of trajecto-
ries and genealogies are integrated byMonte Carlomethods,which
are computationally intensive and onlywork for investigating a lo-
cal region (Griffiths and Tavaré, 1994; Kuhner et al., 1995; Chen
and Slatkin, 2013). Our method gains computational efficiency by
assuming independence among different chromosomes, and con-
structing the composite likelihood as the product of the marginal
likelihood for each chromosome. The performance and the com-
putational efficiency of the HMM method enable its potential ap-
plications to genome-wide studies on large-scale data sets. But
some simplified assumptions may cause biased estimation when
the selection intensity is medium or weak. It is reasonable to be-
lieve that if selection is weak or moderate, coalescent-based ap-
proaches work better than the HMM method, since ignoring the
randomness during early stages of selection can cause bias in es-
timation (Stephan et al., 1992; Braverman et al., 1995). But on the
other hand, the current coalescent-based methods, such as, Chen
and Slatkin (2013) are computationally intensive, and are only ap-
plicable to a small sample of haplotypes of a local region. A hybrid
of the HMM framework and coalescent models, and making use of
analytical forms of coalescent distributions to improve the compu-
tational efficiency (e.g., Griffiths, 1984; Chen and Chen, 2013), may
be a potential direction for further improvement.

The HMMpresented in this paper has a potential to incorporate
more complex scenarios. For example, it can be used to detect
soft sweeps on standing variations, which contain two or more
ancestral haplotypes (Hermisson and Pennings, 2005). Another
useful extension is to model the haplotype structure in multiple
populations.

Note that the proposed method is designed for recent positive
selection. If selection is ancient and the mutant has already been
fixed in the population, the proposed method will not be useful.
For alleles fixed at an earlier time, allele frequency spectrum-based
methods, such as Chen (2012), may be a better choice.
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