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ABSTRACT A new approach to assigning individuals to populations using genetic data is described. Most existing methods work by
maximizing Hardy—Weinberg and linkage equilibrium within populations, neither of which will apply for many demographic histories.
By including a demographic model, within a likelihood framework based on coalescent theory, we can jointly study demographic
history and population assignment. Genealogies and population assignments are sampled from a posterior distribution using a general
isolation-with-migration model for multiple populations. A measure of partition distance between assignments facilitates not only the
summary of a posterior sample of assignments, but also the estimation of the posterior density for the demographic history. It is shown
that joint estimates of assignment and demographic history are possible, including estimation of population phylogeny for samples
from three populations. The new method is compared to results of a widely used assignment method, using simulated and published

empirical data sets.

HE assignment of individuals to populations is a common

population genetic application (Paetkau et al. 1995;
Rannala and Mountain 1997; Pritchard et al. 2000; Dawson
and Belkhir 2001; Corander et al. 2003; Baudouin et al.
2004; Guillot et al. 2005; Francgois et al. 2006; Pella and
Masuda 2006; Wu et al. 2006; Huelsenbeck and Andolfatto
2007; Zhang 2008; Reeves and Richards 2009). Most meth-
ods assume random mating within populations and free
recombination between loci to find population assign-
ments that minimize the amount of departure from
Hardy-Weinberg equilibrium (HWE) and linkage equilib-
rium (LE) within populations. The population assignment
with the highest likelihood, or highest posterior probabil-
ity under Bayesian approaches, is taken as the assignment
estimate. Generally the true allele frequencies are not
known so that methods must either make use of estimated
allele frequencies (e.g., Grant et al. 1980) or consider the
range of possible allele frequencies (e.g., Pritchard et al.
2000).
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Methods based on minimizing departure from HWE and
LE typically offer little accommodation for the different
potential causes of differentiation between populations.
They allow populations to differ in allele frequencies, but
they do so without including explicit evolutionary models of
demography and mutation that cause such differences
(Waples and Gaggiotti 2006; Listman et al. 2007). For ex-
ample, it is possible that a method based on departures from
HWE and LE will provide better estimates when divergence
arises under an island model than when a similar amount of
divergence arises under a phylogenetic branching model or
vice versa. To assess such dependencies methods must be
run on data simulated under various kinds of demographic
histories. Without demographic history as a part of the
model implemented in a method, such simulation studies
tend to treat the computer program as a “black box” that
can reveal interactions between demography and assign-
ment only when observed in operation under different
kinds of simulated histories (Evanno et al. 2005; Waples
and Gaggiotti 2006; Chen et al. 2007; Fogelqvist et al. 2010).

In fact, likelihood-based methods for studying demo-
graphic histories offer a direct path to studying population
assignment (e.g., Matz and Nielsen 2005; Nielsen and Matz
2006). For example, Kuhner et al. (1995) pioneered a
Markov chain Monte Carlo (MCMC) approach (Metropolis
et al. 1953; Hastings 1970) to sampling genealogies, which
could be modified to include the population assignments of
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genes, at the terminal branches of genealogies, as free param-
eters. Here we take this general approach to study population
assignment and demographic history by adapting an MCMC
framework developed for the isolation-with-migration (IM)
model for two or more populations (Hey and Nielsen 2007;
Hey 2010b). The goals of this article are to describe a new
method for estimating population assignment together with
parameters of an IM model and to examine how well the
method performs using simulated and real data and in com-
parison to another widely used assignment method that does
not use an explicit divergence model

Models and Methods

The multipopulation IM model includes a population tree
that is an ultrametric binary rooted tree (of populations)
with a labeled history (Edwards 1970), in which nodes of
the tree are ordered in time (Hey 2010b). A genealogy,
represented by G, is also a bifurcating ultrametric tree that
lies within the population tree and that describes, for all of
the sampled gene copies of a locus, the times and topology
of common ancestry and the times and directions of migra-
tion events. Individual loci have no recombination, but all of
the loci, denoted by L, are assumed to be unlinked so that
their corresponding genealogies are independent of each
other. Every node of a genealogy is given the corresponding
population label within which it falls in the population tree
(see Figure 1).

Hey and Nielsen (2007) used MCMC to sample a multi-
locus genealogy G and splitting time t from the posterior
distribution,

_ fX|G)w(Glt)m(t)
m(G,t%) = =

where f(X|G) is the likelihood of the data, w(G|t) and m(t)
are prior distributions, and f(X) is the marginal likelihood.
In the method of Hey and Nielsen (2007) the data, X, in-
clude gene copies from one or more loci that are already
assigned to the populations from which they are sampled.
We use f to denote likelihood and marginal-likelihood func-
tions and 1 to designate prior and posterior distributions. It
is possible to sample genealogies from the posterior distri-
bution by having a closed-form expression for the prior dis-
tribution given by

=(Glt) = / 7(Glt, ®)7(O[t)d®

where O is a vector of demographic parameters pertaining
to population sizes and migration rates. Values of G drawn
from the posterior distribution are used to estimate the pos-
terior density of ® given the data X,

w(OX) = [y (0], 1)m(G, t}X)dG
= Egx[m(0|G. t)],

(1)
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where WV is the set of all possible genealogies, E is the ex-
pectation over samples from (G, t|X), and w(® |G, t) is the
distribution of demographic parameters given genealogies
and splitting times. Estimates of @ are obtained by maximiz-
ing (1) over the range of parameter values (as specified by
the prior distribution of ®) using the posterior sample of G,

J
Eg.ox[7(O[G, ) %Zw (©16;,t)
1 o m(Gjlt;, ©)w(O|t)) @
3]; 7(G; |tJ ’
where J is the size of a posterior sample, w(G;|t;, @) =

7(G;j| @) is the probability of the jth posterior sample of
genealogy given demographic parameters (Kingman 1982;
Felsenstein 1992), and w(®|t)) is the prior of the demo-
graphic parameters. Typically in analyses of IM models the
prior distribution on parameters is uniform over a specified
range. In this case the posterior density is proportional to
the likelihood over the range, permitting likelihood-ratio
tests of nested demographic models (Hey and Nielsen
2007).

IM models with assignment

We consider data drawn from n individuals, with each in-
dividual having come from one of K., sampled popula-
tions. The genetic data without information on which
populations individuals came from is denoted by Y. The
genotype for individual i at locus [ is a single-valued vector
Y; for haploid data or a two-valued vector (Y, Yyo) for
diploid data and the genotype for individual i, Y;, consists
of L such vectors. Assignment A is a vector of size n with
element A; taking a value from 1 through K ,,,x. The number
of sampled populations, K, can be less than K, because A
can have zero individuals in some populations. The number
of ways to assign n individuals to K populations is a Stirling
number of the second kind (Bell 1934). All of the assign-
ments are equally likely a priori. The posterior distribution
of genealogy, splitting times, and assignment given data
from unassigned individuals is

fYIG)n(G[t, A)m(t|A)m(A)
fY) ’

where f(Y|G) is the likelihood, w(G|t, A), w(t|A), and w(A)
are priors, and f(Y) is the marginal likelihood. Note that
because the likelihood f(Y|G) depends only on the topology
and branch lengths of the genealogy, it does not depend
on A.

(G, A tY) = 3

MCMC with genealogies, splitting times, and assignment:
To estimate the posterior distribution (3) we employ an
MCMC simulation in which we start with an initial value of
(GO, t©, A®) and replace current values (G, t, A) by new
values (G*, t*, A*) with acceptance probability



(G, t,A—G*, t*,A%)
[ F(Y|G*) w(G*|t*,A%) w(tA*) w(A*) q(G*,t*,A*—G,t,A)
:mm{l’ F¥I6) w(GltA) w(tA) w(A) qG. t.A—>G*,t*,A*)}’
4)
where g is a proposal density. An update of assignment
requires relabeling branches on genealogies, which can
entail changes to the structure of genealogies, including
changes in coalescent times as well as migration times
and directions thereof. Furthermore, when an individual
is represented by multiple loci, an update of that individ-
ual’s assignment must be applied to the genealogies for all
of the loci with genes sampled from that individual. Just
as in the case of an update to a population splitting time,
which applies to the genealogies for all of the loci in
a study (Hey and Nielsen 2004), the acceptance rates of
proposed assignment updates are expected to decrease as
more loci are included in the study. Two update protocols
for assignment were developed on the basis of previous
methods for updating genealogies (Beerli and Felsenstein
1999; Nielsen and Matz 2006; Hey and Nielsen 2007). We
first describe the approach of Nielsen and Matz followed
by that of Beerli and Felsenstein.

Nielsen and Matz (2006) updating method: Figure 1
shows a change of assignment on a genealogy in which
five individuals are each represented by a single gene
copy. Figure 1, A and B, shows a genealogy in a two-pop-
ulation model before and after gene copy 4 is reassigned
from population 2 to 1. Prior to the reassignment migra-
tion events along the branch leading to the genes of the
reassigned individual are erased, and new migration
events are resimulated after the genes are reassigned
(i.e., moved to a different population). Note that each
internal node on the genealogy has a population designa-
tion, which depends upon the time of that node, the as-
signment of descendant gene copies, and migration
events on branches leading to the descendant gene cop-
ies. When a sampled gene is reassigned to another pop-
ulation, its new label may become incompatible with the
population label at the base of its branch. In Figure 1A the
labels at nodes C and 4 are both population 2, but after
gene 4 is moved to population 1 in Figure 1B its location is
incompatible with the population label 2 on node C. This
incompatibility is resolved by simulating migration events
conditioned on the requirement that population labels at
internal nodes be compatible with the population labels
of sampled gene copies. With this type of update the prob-
ability of the data given the genealogy remains un-
changed; ie., f(Y|G*) = f(Y|G) because the update
changes neither the topology nor the branch lengths of a ge-
nealogy. With a uniform prior for the splitting time and as-
signment, the acceptance probability of Equation 4 becomes

. m(G*[t*,A¥) q(G*,t*,A* > G, t,A)
ming 1, .
m(Glt,A) q(G,t,A—G* t* A¥)

)

Pop. I'\ [ Pop.2

A

Figure 1 Assignment update for a genealogy with five gene copies over-
laid upon a tree for two sampled populations. Population 3 splits into
populations 1 and 2 at time T1. Two coalescent events A and B occur
within population 3. Coalescent event D occurs within population 1 and
event C within population 2. (A) A genealogy is drawn before reassigning
gene 4 and (B) another after the reassignment. All four coalescent events
remain unchanged when reassigning gene 4. The reassignment of gene 4
necessitates migration event m. The assignment of five individuals associated
with the genealogy of Ais (1, 1, 1, 2, 2), and that of Bis (1, 1, 1, 1, 2).

The Nielsen and Matz (2006) update is convenient be-
cause it does not require changing the tree topology and
therefore does not require recalculation of the likelihood.
However, this same feature, and the need to resimulate mi-
gration events to accommodate a fixed topology with a new
assignment, leads to low acceptance rates when multiple
loci must be updated simultaneously.

Beerli and Felsenstein (1999) updating method: Beerli
and Felsenstein (1999) devised an update in which a pro-
posed genealogy is sampled from the prior distribution
for genealogies, conditioned on the current values of the
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demographic parameters. We found that this method, adap-
ted to accommodate assignment, performed better with data
sets having multiple loci than did the Nielsen and Matz
(2006) method and hereafter all results are based on the
Beerli and Felsenstein (1999) method.

The Beerli and Felsenstein (1999) update begins by ran-
domly selecting gene copies to be reassigned and proceeds
by erasing the external branches for those gene copies, ran-
domly selecting new population assignments, and simulat-
ing new branches. Beerli and Felsenstein called the new
edge an “active lineage” and all the other lineages in the
genealogy “inactive lineages”. The simulation of an active
lineage can include adding migration events, and it ends in
a coalescent event. When the active lineage coalesces at
some time point, one of the inactive lineages is chosen as
a new sister to the active lineage. To improve the acceptance
rate of updates when the infinite sites mutation model
(Kimura 1969) is used, we propose only genealogies that
are compatible with the data under that model. When a fi-
nite sites mutation model is in use, the situation is more
complex because selection of any inactive lineage as a sister
to the active lineage will yield a tree that has a nonzero
likelihood. We have not implemented the method for finite
site mutation models.

The method of Beerli and Felsenstein requires the
simulation of migration and coalescence using values of
demographic parameters. However, unlike some MCMC-
based genealogy samplers, the method of Hey and Nielsen
(2007) does not include these parameters in the Markov
chain, and so it was necessary to use values estimated from
the current genealogy. Just as we estimate the posterior
density for ® using a larger sample of genealogies using
(2), we can use the current genealogy G; of a single locus
to estimate ® by maximizing

m(Gjlt;, ®)1T(®).

ﬂ(@‘X) ~ 1T(®|Gj7tj) = Tr(Gj|tj)

6
We describe one way to estimate ® using a single

genealogy in Appendix A. The acceptance probability
apr(G, t, A — G*, t*, A¥) is given by

mind 1 f(Y|G*) m(G*|t*, A*) q(G*,t*,A*—>G,t,A)
1
" fYIG)  m(GItA) q(G,t,A—G* t+,A%) [’

(7

where f(Y|G*) # f(Y| G), because of changes to the topology
and branch lengths of the genealogy.

Implicit inference of the population tree: In the absence of
a population tree, assignment information is limited to
which individuals occur together in the same groups, and
the actual population labels attached to groups are in-
terchangeable. However, with a population tree, populations
are not interchangeable but rather vary in how related they
are to other populations, in which case assignment becomes
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a question not only of grouping individuals but also of where
groups of individuals fall on the population tree; see also
O’Meara (2010). Figure 2 shows an example in which sam-
pling assignment, for populations on a tree, requires that we
sample both the assignment and the population tree. The
posterior distribution of genealogy, population tree, and as-
signment is

fYIG)m(Gr, A)m(r|A)m(A)
fY) ’

where 7 is a population tree, which is taken to include the
vector of splitting times t.

In trials using simulated data in a three-population IM
model, neither the Nielsen and Matz (2006) nor the Beerli
and Felsenstein (1999) protocols provided sufficient mixing
of the MCMC simulation. Therefore we developed a method
of updating the population tree and applied it to the case of
three sampled populations. The acceptance probability with
this update is

. 1T(G*"T*,A*) ’AT(T*}A"“) Tr(A"") q(G*,T""7A""—>G7T7A)
mln{l, 7(Gl|,A) w(7|A)  w(A) q(G,T,A—»G*,T"‘,A*) ’
©

®

7(G, T, AlY) =

where the likelihood ratio disappears because f(Y|G*) and
f(Y|G) cancel out. Figure 2 describes a population tree up-
date, what we call the “three-point-turn”, in which a popu-
lation branch first slides down along its sister branch to form
a polytomy and then back up a different branch.

Summarizing assignment values sampled from the
Markov chain

Huelsenbeck and Andolfatto (2007) introduced a method of
summarizing a set of assignment values that are sampled
from a posterior distribution. We employ this approach
and adapt it to quantify assignment uncertainty and to esti-
mate demographics jointly with assignment. Following
Huelsenbeck and Andolfatto (2007) we make use of the
concepts of “partition distance” between two assignments
and of “mean assignment”. We explain these concepts in
some detail because of their importance for jointly estimat-
ing population assignment and demographic history.

Partition distance: The partition distance is the minimum
number of individuals that must be removed to make
two assignments equivalent (Almudevar and Field 1999;
Gusfield 2002; Konovalov et al. 2005). For two assignments,
with populations represented, respectively, we begin by
relabeling each assignment using the restricted growth func-
tion (RGF) (e.g., Stanton and White 1986; Huelsenbeck and
Andolfatto 2007). Under RGF indexing, individual assign-
ments are numbered sequentially except that all individuals
assigned to the same population are assigned the same la-
bel. For example, the RGF of assignment (3, 3, 1, 2) is (1, 1,
2, 3), where the first two individuals form a group, and each
of the third and the fourth forms its own group. With the



Figure 2 Three-point-turn update of the tree with three populations. (A)
A tree is drawn with three populations (PX, PA, and PB). Splitting events
T1 and T2 separate time in three periods, |, Il, and Ill. A genealogy of six
genes overlies the population tree and the actual assignment is (PX, PX,
PA, PA, PB, PB). (B) We propose the population tree from the tree of A by
swapping PA and PB only when there are no coalescent events during
period Il. Assignment of genes 1 and 2 remains unchanged while genes 5
and 6 are assigned to PA and genes 3 and 4 are assigned to PB. During
period |, migration and coalescent events are labeled by swapping labels
of PA and PB. During period Il, events are labeled by swapping PC and PB
only along the lineages that pass down from PA and PB and not from PX.
The actual assignment changes to (PX, PX, PB, PB, PA, PA).

reindexed assignments A; and Ay, let d(A;, A,) be the num-
ber of individuals whose population assignment in A; is
different from what it is in A,, and let A(A) be a relabeling
in which the population labels in an assignment A are per-
muted. There are k! possible permutations of a set of k
elements; e.g., six permutations of the ordered set {1, 2,
3} include (1, 2, 3), (1, 3, 2), (2, 1, 3), (2, 3, 1), (3, 1,
2), and (3, 2, 1). Because labels are ordered in an assign-
ment, a relabeling operation A(1, 2, 3) = (3, 2, 1) means
that AN(1) = 3, AM(2) = 2, and A(3) = 1. For the assignment

with the most populations represented, there are s! possible
relabeled assignments, where s = max(ss, s2), and s; and s,
are the numbers of distinct populations in A; and A,, re-
spectively. For each possible relabeling of that assignment,
we calculate d(A;, Ay). The smallest of these values is the
partition distance. For example, consider two assignments of
(3,1, 2) and (2, 2, 1). Their RGF values are (1, 2, 3) and (1,
1, 2), respectively. We choose the first one to relabel and fix the
second. Among six possible assignments (1, 3, 2) differs from
(1, 1, 2) in only one individual. The partition distance is 1.

When there are more than two populations, and they are
connected by a population tree, not all labels are inter-
changeable. In this case we use the actual assignment
samples without RGF conversion. For example, with three
populations only two of six (3!) permutations are valid with
a population tree of ((1, 2), 3) [i.e., (1, 2, 3) and (2, 1, 3)]
because only these two permutations place population 3 as
the outgroup to the sister pair of 1 and 2. If a binary tree of
populations has K pairs of sister present-day populations,
then there are only 2% permutations that provide equivalent
labelings. All of these labelings fall equivalently onto the
same population tree. An example is shown in Table 1 for
five assignment samples for a problem with six individuals
and a population tree in which populations 1 and 2 are the
most closely related: ((1 ,2), 3). We identify the partition
distance that is constrained by the population tree, as the
“tree-constrained partition distance”.

Determining the mean assignment: The method of mean
assignment developed by Huelsenbeck and Andolfatto
(2007) is to summarize a posterior sample of assignment
values by minimizing the squared partition distance to the
sampled assignment values. To extend the idea of mean
assignment to the case where we are given a population
tree constraint, we define the tree-constrained mean as-
signment as the assignment that minimizes the tree-
constrained partition distance to all sampled assignments.
The tree-constrained mean assignment minimizes the tree-
constrained partition distance, rather than the square of it, as
used by Huelsenbeck and Andolfatto, because squared tree-
constrained partition distances can be inconsistent with the
partition distance. For example, using the total sample of size
5 in Table 1, the sum of the squared tree-constrained distan-
ces of assignment A is larger than the one using assignment B
although assignment A is closer to the five samples than is
assignment B.

Quantifying assignment uncertainty: The unit of a partition
distance is the number of individuals, and as such it is fairly
easy to interpret a given value. For example, consider a case
of samples from two populations for which the true assign-
ment is known. Then a distance between a sampled assign-
ment and the true value that is half the number of individuals
in the study would suggest that the assignment was no better
than random with respect to the true value (i.e., half the
individuals are correctly assigned and half are not).
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Table 1 Examples of relabeling and distances for assignment samples

Sampled assignment Relabeling island Relabeling tree Tree-constrained

Sample no. by individual model? Partition distance? model (1, 2), 3)¢ distance?
123456 123456 Ae Bf Ae Bf
1 221133 112233 0 1 112233 0 1
2 223311 112233 0 1 113322 4 3
3 112233 112233 0 1 112233 0 1
4 321211 123233 2 3 312122 4 3
5 221233 112133 1 2 112133 1 2
Sumd 3 8 9 10
Squaredh 5 16 33 24

Five sampled assignments are shown for six individuals from three populations, with each individual having a population value of 1, 2, or 3. The third column represents one

possible relabeling of the assignment. The fourth column shows the partition distance (see text) between two candidate assignments, A and B. The fifth column represents

one of two possible relabeled assignments by considering a particular population tree. The sixth column shows the tree-constrained distances between assignments A and B

with the assignment of the fifth column.

? Relabeled assignments, of six possible relabelings, under island population structure.

® The minimum number of individuals that have to be removed from a relabeled assignment (among all six possible relabelings) to calculate the distance to assignment A or B
(Almudevar and Field 1999).

€ Relabels of the sampled assignment that is constrained by the population tree such that only populations 1 and 2 form an equivalence class.

9The minimum number of individuals required to make the relabel with the tree constraint equivalent to the true assignment A or B.

€ Assignment A: 11223 3.

’ Assignment B: 11222 3.

9 Sum of the five distances.

h'Sum of the five squared distances.

The partition distance also lends itself to quantifying each  individuals 3 and 4 are assigned to A and 1 and 2 are
individual’s assignment uncertainty, which we define as the  assigned to B. Failing to identify this equivalence will prevent
proportion of sampled assignment values in which that in-  the joint estimation of demographic parameters and assign-
dividual must be removed in the calculation of the distance = ment. Figure 3 shows a simple case with two gene copies in
between an assignment and the mean assignment. The more  two populations. Note that in Figure 3, A and B are equiva-
often an individual is removed in the procedure of comput- lent, but reversed with respect to population labels 1 and 2. If
ing assignment distance, the less confident we can be  we simply use the two genealogies without any modification,
that the individual is assigned to the population in which  population 1 is represented by gene 1 in Figure 3A and by
it occurs in the mean assignment. Another useful measure  gene 2 in Figure 3B. If gene 1 and gene 2 are sampled from
of assignment uncertainty is the variance of a mean as- two different populations, then we wish to estimate parame-
signment, which is the mean squared partition distance be-  ters that are associated with one population using genealo-
tween sampled assignment values and the mean assignment  gies in which that population contains either gene 1 or gene 2
(Huelsenbeck and Andolfatto 2007). Similarly the standard  but not a mixture of both. To accommodate these kinds of
deviation, in units of individuals, is the square root of the equivalencies, by following Stephens (2000) we relabel the
variance. This measure can serve as an indication of the  genealogy in either Figure 3A or 3B by swapping the labels of
number of individuals that are typically uncertain in their = populations 1 and 2 as well as the population labels for in-
assignment. ternal nodes C and D for this genealogy. The swapping oper-
ation on genes with labels 1 and 2 is denoted by v(A) and the
additional swapping of internal nodes is denoted by v(G).
Because the posterior distribution of assignment and geneal-
We developed two methods for jointly estimating assign-  ogies is invariant to population label changes, under an island
ment and population-specific demographic parameters. The  model and under a two-population IM model (see Appendix
first algorithm, joint demography and assignment (JDA), B), we can find the estimate ® and the list of permutations
can be applied to an island model or a two-population  vy,...,v; that jointly maximizes (1/J) > ; w(O[v;(G;)) (see
model with a single splitting time. The second algorithm, Equations 1 and 2). This maximization is reminiscent of Al-
joint demography and assignment with population tree  gorithm 4.1 of Stephens (2000). Because this approach
(JDAP), can be applied when there are more than two  would be extremely slow due to the very large number of
populations on a population phylogeny. To understand these  searches for the highest posterior probability, we use an ap-
we first turn to the matter of “label switching”, in which the = proximation based on the mean assignment.
effective identity of populations changes with assignment
(Stephens 2000). Consider a case of four individuals, with ~ JDA algorithm under an island model: Rather than
individuals 1 and 2 assigned to population A and individuals  maximizing the joint posterior density, for each of all possi-
3 and 4 assigned to population B. In a model with just two  ble permutations of sampled assignments we use the mean
populations this assignment is equivalent to one in which  assignment and partition distance to approximate a list of

Joint estimation of assignment and
demographic parameters
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A | 2
Pop | Pop 2
D
C
E
Pop 3
B 2 |
Pop | Pop 2
D
C
E
Pop 3

Figure 3 Label-switched genealogies. Genealogies of A and B are equiv-
alent except that the labels are switched and the assignment of geneal-
ogy A is (1, 2), while that of genealogy B is (2, 1). The population labels at
the two migration starting and ending points are also switched. The pop-
ulation label at the root node E remains unchanged because it is allotted to
the ancestor population. Likelihoods of the two genealogies are equal, and
their prior probabilities of the genealogies are also the same.

permutations, which are then used to calculate the joint
posterior density. The algorithm proceeds as follows:

Step 1: Find the mean assignment Aofa posterior sample of
J assignments (A, ...,A).

Step 2: Identify the sequence of permutations {vi}jcs1, . n
such that for each A; d(A,v;(A;)) is the smallest among
the possible K! relabelings.

Step 3: In Equation 2 replace w(®|G;j, t) with w(@|v(G)), t)
to estimate the demographic parameters.

Note that we use the same prior for all population sizes or
migration rates for populations that are a priori interchange-
able, which renders the prior of the relabeled genealogy
w(v(G)) equal to the original prior w(G) (see Appendix B).

JDAP algorithm: When sampling assignments from the
posterior distribution we are also implicitly sampling the
population tree that is associated with each of the assign-

ments (see Equations 8 and 9). Demographic parameters
can be meaningful only under a particular population tree. If
two population trees are different, the ancestral population
in one of the two population trees can lose its meaning in
the other tree. Because population assignment and popula-
tion tree are confounded, we first find disjoint sets of
a posterior sample of population assignment on the basis
of its proximity to population trees implied by population
assignment. For a population tree with a considerable size of
population assignment, we estimate demographic parame-
ters that are pertinent to the population tree. For example,
assignment sample 4 in Table 1 has only individual 1 in
population 3 while assignment samples 1, 3, and 5 have
individuals 5 and 6 assigned to population 3. Because pop-
ulation 3 is the outgroup in the population tree in the model
((1, 2), 3), these two groups of sampled assignments imply
different phylogenies for the actual populations from which
these samples came. Similarly the two groups of samples
invoke different meanings for the demographic parameters
associated with the outgroup population 3. Because the im-
plied phylogeny and the meaning of the demographic
parameters change with sampled assignment values, we use
an algorithm for estimating the posterior density in which
genealogy and assignment samples are grouped on the basis
of which population tree they are most strongly associated
with. To find the most close population tree of a population
assignment we use the measure of tree-constrained partition
distance and tree-constrained mean assignment. For three
populations there are three groups of samples corresponding
to the three rooted population trees. The algorithm begins
with a categorization and proceeds as follows:

Step 1: Find the mean assignment A of a posterior sample of
J assignments (Aq,...,A)).

Step 2: Identify the sequence of permutations {vj}je1,.. .n
such that d(A, vj(4)) is the smallest among the K! possi-
ble relabelings for each A;.

Step 3: Categorize each sampled assignment and genealogy,
A; and G;, to groups on the basis of the corresponding
population trees by using the sequence of permutations
{viljer,...n

Step 4: That population tree 4 that occurs most often in the
categorized sample is considered to be that with the high-
est posterior probability. Only those assignments and ge-
nealogies that are associated with this tree are retained,
and these are renumbered from 1 to J., where J. is
the total number of the retained values of A and G. The
demographic parameters of the population tree are esti-
mated using just the categorized subsample of genealo-
gies because other genealogies may be related to
disparate population trees. The remainder of the JDAP
algorithm is similar to the JDA algorithm, but is adapted
to the case of an IM model with a population tree.

Step 5: Find the tree-constrained mean assignment A of the

.....

the constraint of the best supported tree.
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Step 6: Identify the sequence of permutations {vj}ic s,
such that d(A, v;(A;)) is the smallest among the 2% possible
relabelings for each A;.

Step 7: Maximize Equation 2, with w(®|G;, t) replaced by
(0 |vj(G), t) to find the demographic parameter estimate
O that is associated with the population tree 7.

We have not yet implemented the case where four or more
populations are related by a binary species tree. In these
cases the underlying topology of the population tree will
also be variable.

Computer programs: The IMa2 computer program (Hey
2010b) was modified to incorporate the methods described
here, using a uniform prior on assignment. Data were sim-
ulated using a coalescent simulator program SIMDIV (Wang
and Hey 2010) that generates data under IM models. These
programs are available at http://genfaculty.rutgers.edu/
hey/software. We also used the STRUCTURAMA program
(Huelsenbeck and Andolfatto 2007) as a representative al-
lele-based method. STRUCTURAMA implements a method
that is similar to that developed by Pritchard et al. (2000),
which is implemented in the STRUCTURE program. How-
ever STRUCTURAMA employs an analytic integration over
allele frequencies, rather than Gibbs sampling of allele fre-
quencies, and it does not require that the user specify the
number of populations. STRUCTURAMA is also unique
among population assignment programs in that it provides
estimates of the mean assignment, which we use for com-
parison to the methods described here. We confirmed that
for a fixed number of populations STRUCTURAMA uses
a uniform prior on assignment by running the program
for a fixed four-population model without data. The results
revealed a uniform posterior probability of assignment,
equal to the prior in the absence of data (results not
shown).

Data

Four groups of simulated data sets were used to assess how
well the new methods perform and to compare results for
the new methods with a method that does not include
a demographic model. We also analyzed and compared
results for two real data sets drawn from the literature.

Simulated data

Simulated data sets were based on a two- or three-
population IM model with parameters for sampled pop-
ulation and ancestral population sizes, splitting times
and migration rates (Nielsen and Wakeley 2001; Hey and
Nielsen 2004). Data were simulated under the infinite sites
mutation model. MCMC conditions (in terms of burn-in du-
ration, length of chain, heating scheme, and numbers of
Metropolis-coupled chains) were determined on the basis
of preliminary runs for representative simulated data sets
to ensure samples of effectively independent genealogies
and assignments. Results were compared to those obtained
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for the same data using the program STRUCTURAMA,
which did not incorporate a mutation model or a demo-
graphic model. Because STRUCTURAMA required allelic
data, it was necessary to convert simulated DNA sequences
to alleles (i.e., each distinct sequence was given an allele
designation). This conversion of sequences to alleles neces-
sarily incurred loss of information. Because the new method
uses the infinite sites model and does not require that se-
quence data be reduced to alleles, we expected that it would
do a better job inferring assignment than one that does not.

Simulation set 1—varying the number of loci: Data sets
were simulated with varying numbers of loci with de-
mographic parameters as follows: 6; = 0, = 05 = 1, t =
0.1, and m;, = my; = 0.1. A single gene copy was sampled
from each of 20 individuals for each population, and the
number of loci, L, ranged from 1 to 10. For each value of
L, 50 independent data sets were generated. Prior distribu-
tions for parameters were uniform from zero to a maximal
value: 10 for population mutation rates, 1 for population
migration rates, and 3 for splitting time.

Simulation set 2—varying population size, migration
rates, and splitting time: Several values were considered
for each of the parameters of the two-population IM model:
population mutation rate 6’s were set to 0.5, 1.0, or 2.0 (in
each case all three populations had the same size); popula-
tion migration rates, mq5 X 6 and m,; X 6 in both directions
were set to 0.0, 0.1, or 1.0; and scaled splitting time, t/6,
was set to 0.05, 0.10, or 0.20. Twenty gene copies were
sampled from each population, with four loci per data set;
and 50 data sets were simulated for each of the 27 sets of
parameter values. Parameter priors were the same as in
simulation 1 except for the maximum of splitting time t
being set to 10.

Simulation set 3—joint estimation of assignment and de-
mographics: To assess the quality of joint estimates of
assignment and demography, data sets were simulated
under models with recent divergence and/or high gene
flow. Such models yield assignments with high uncertainty
and it is in these types of situations where we want to see
how well demography can be estimated together with
assignment. Two models were used, one with no migration
and splitting time set to t/64 = 0.05 and a second with
migration rates of 0.5 in both directions and a splitting time
of t/64 = 0.10. For both models population size parameters
were set to unequal values (6; = 1, 6, = 3, and 65 = 2).
Each data set consisted of 10 loci with 20 gene copies from
each sampled population, and 50 independent data sets
were generated for each set of parameter values.

Simulation set 4—implicit inference of population tree:
To assess how well sampled assignment values can reveal
the population tree, we consider 12 three-population IM
models. We assumed that all of the five populations (three


http://genfaculty.rutgers.edu/hey/software
http://genfaculty.rutgers.edu/hey/software

Table 2 Runtime settings for IMa2 and STRUCTURAMA for the two real data sets: mouse (Geraldes et al. 2008) and chimpanzee

(Fischer et al. 2006)

Data L2 Kb n¢ Program? me Burn-in® Total Samples hng Brax" Omax’ Trmax Mnaxk
Mouse 7 2 113 IM tree IS 1% 10° 1 x 108 5x 10° 40 0.85 10 5 0.5
Mouse 7 2 113 ST NA 1x 104 1x10° 1x 104 10 NA NA NA NA
Chimp 10 4 39 IM island IS 5x 104 2 x 108 4 x 104 150 0.50 5 NA 1
Chimp 10 4 39 ST NA 1x 104 1x10° 1x 104 100 NA NA NA NA
Chimp 9 2 20 ST NA 1% 104 1% 10° 1 x 104 10 NA NA NA NA
Chimp 9 3 30 IM tree IS 1x10° 2 x 108 2 x 104 150 0.10 2 15 0.0001

? Number of loci.

® Number of populations: IMa2 was run with either a tree or an island structure of K populations, and STRUCTURAMA was run with a fixed number of K populations.

¢ Number of individuals.

9IM tree, IMa2 with a population tree; IM island, IMa2 with an island; ST, STRUCTURAMA.

€ Mutation model for IMa2. IS, infinite sites model; NA, not applicable.

Burn-in, total, and samples are in generations. After steps of burn-in, we take samples from total generations; one generation for IMa2 tries to update the population label
of a single individual whereas one generation for STRUCTURAMA tries to update the labels of multiple individuals.

9 The number of Metropolis-coupled chains (Geyer 1991).
" The heating level of the most heated chain.

"Maximum of uniform prior of population size.

J/ Maximum of uniform prior of splitting time.

K Maximum of uniform prior of migration rates.

present and two ancestral) share the same population size,
with 6 set to 1 in all of the simulations. The older splitting
time was fixed to 0.5 in all of the 12 cases, while the most
recent splitting time took on values of 0.1, 0.2, 0.3, and 0.4.
Instead of just two migration rates (as is the case in a two-
population IM model) a three-population model has eight
migration rates (Hey 2010b). We considered three values
for population migration rates (0, 0.1, and 1), in each case
setting all of the migration rates to the same value. Upper
bounds on the prior distributions were 3 for 6, 2 for t, and 2
for m. Each data set consisted of seven gene copies at each of
four loci. We generated 30 replicates for each of the 12
parameter sets.

Real data sets

Two data sets drawn from the literature are described below
and listed in Table 2 with the options used for the IMa2 and
STRUCTURAMA programs. Unlike the simulation studies we
do not know with certainty that the actual species assign-
ments, in the original reference for each empirical data set
that was used, are correct; and we acknowledge that appar-
ently “incorrect” or uncertain assignment estimates could be
due to mistaken assignments in the original study. Most of
the loci in the data sets were diploid with two gene copies
per locus sampled per individual. For the purposes of this
paper the loci were treated as haploid with one gene copy
sampled from each individual at each locus.

Mouse data set: Geraldes et al. (2008) studied the diver-
gence of mouse species using eight loci. We focused on sam-
ples for Mus domesticus and M. castaneus with seven of the
loci, excluding the mitochondrial control region locus because
of lack of individual information for these species at this lo-
cus. The total number of individuals was 113: 55 from M.
domesticus and 58 from M. castaneus. A two-population IM
model with the infinite sites mutation model was used.

Chimpangzee data set: Fischer et al. (2006) studied diver-
gence among chimpanzee taxa, including West (Pan troglo-
dytes verus), East (P. t. schweinfurthii), and Central African
common chimpanzees (P. t. troglodytes) and bonobos (P. pan-
iscus). The population tree of the four populations was esti-
mated as ((Eastern, Central), Western), bonobo) (Becquet
et al. 2007; Caswell et al. 2008). We used a partial data set
of 10 loci under the infinite sites mutation model. The total
number of individuals was 39: 9 from bonobos and 10 from
each of the chimpanzee populations. Analyses were con-
ducted under a four-population islands model as well as an
IM tree model of the three populations of common chimpan-
zee. In the three-population analysis, without the bonobo, 1
of the 10 loci was not variable and so was excluded.

Results

Simulation study

Simulation set 1: The effect of varying the number of loci is
shown in Figure 4. With 20 individuals from each popula-
tion the largest possible partition distance is 20. Although
results for both methods show very little resolution for as-
signment with small numbers of loci, the trends are useful
for seeing how the methods compare as the number of loci is
increased. For both IMa2 and STRUCTURAMA the distances
from the true value become smaller with more loci, and both
programs start recovering the true assignment (i.e., some
data sets had a mean assignment equal to the true value)
with data sets of seven loci. The two programs performed
qualitatively similarly, with the median distances from the
true value for IMa2 runs consistently less than those for
STRUCTURAMA runs.

Simulation set 2: Table 3 shows the effect of varying the
parameters of a two-population IM model for a model with
four loci. Assignment accuracy decreased for more recent
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Figure 4 The result of simulation 1 for assessing the effect of numbers of
loci on accuracy of assignment. For each simulated data set the distance
of the mean assignment from the true assignment was recorded. Each
box plot includes the median of the 50 distances and is as large as the
interquartile range or the first to the third quartile. The whiskers extend to
the most extreme data point but not more than 1.5 times the interquartile
range.

divergence times, larger migration rates, and smaller pres-
ent-day population sizes. To compare the assignment per-
formance of the two methods we counted the number of
data sets in which IMa2 inferred assignments better than,
worse than, or as good as STRUCTURAMA. One method
performed no better than the other in the cases of 6 = 0.5
or 1.0 and those of t/6 = 0.05 or 0.10. IMa2 outperformed
STRUCTURAMA in the cases of 6 = 2 and those of t/6 = 0.2.

Simulation set 3: Table 4 shows how well the method per-
formed for the joint estimation of assignment and demogra-
phy. For t = 0.05 and no migration, the distance between
the mean and true assignments was 13.68, which was quite
large for a total sample of 40 gene copies per locus. Under
this model the estimates of t tended to be much lower when
assignment was variable than when it was fixed. Also under
this model, the upper 95% quantile for 6; was much higher
(near the upper bound for this parameter) when assignment
was variable. The same patterns for t and 6; were seen for
the second model in which the splitting time was greater
(t = 0.1) but there was substantial gene flow. Under this
model the distance between the mean and true assignments
was 6.64. In both of these models, regardless of whether
assignment was fixed or variable, the estimated posterior
distributions for migration rates were nearly flat and the
population size estimates had a substantial bias, with esti-
mated values tending to be between 65% and 85% of the
true value. In short, the conditions of low divergence and
modest data set size that made assignment difficult to esti-
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Table 3 The result of simulation 2 for assessing population
assignment inference with the two-population IM model by
varying population sizes, splitting time, and migration rates

Summary? Comparison
02 t0b o xmc IM ST IMe  STf Tided9
05 005 O 155 (8,20) 15.0 (8,200 19 18 13
0.5 0.05 01 14.0 (7,200 140 (7,200 21 21 8
0.5 0.05 1 155 (9,20) 16.0 (9,19 21 19 10
05 010 O 120 (2,19 115 (2,200 25 16 9
0.5 0.10 041 10.5 (3,19) 105 (3,200 22 22 6
05 010 1 145 (5,200 140 (4,200 18 19 13
05 020 O 6.0 (0,15 7.0 (0,17) 26 7 17
0.5 020 041 50 (0,17) 6.0 (0,19 28 9 13
05 020 1 11.0 (1,20) 105 (2,19 24 15 11
1 005 O 135 (6,20) 14.0 (5,200 19 21 10
1 0.05 0.1 155 (7,20) 16.0 (9,200 24 17 9
1 0.05 1 14.0 (9,200 15.0 (7,19 25 16 9
1 010 0 70 (2,200 85 (2,18 27 15 8
1 0.10 0.1 85 (1,200 100 (2,19 27 16 7
1 0.10 1 11.0 (4,200 115 (4,18 26 20 4
1 020 O 30 (0,14) 40 (0,17) 28 5 17
1 0.20 01 30 (0,17) 5.0 (0,18 36 7 7
1 020 1 6.0 (1,200 7.0 (1,18 32 8 10
2 005 O 95 (5,190 12.0 (4,19 32 9 9
2 005 01 120 (3,19 13.0 (4,200 25 20 5
2 0.05 1 13.0 (6,19) 135 (5,19 24 22 4
2 010 O 50 (0,18 7.0 (1,18 34 10 6
2 010 041 50 (1,17) 65 (2,17) 35 9 6
2 010 1 70 (1,190 80 (2,20) 33 8 9
2 020 O 0.0 (0,5 20 (0,7) 33 1 16
2 020 041 1.0 (0,7) 2.0 (0,11) 22 5 23
2 020 1 30 (0,14 5.0 (0,17) 34 3 13

Fifty data sets were simulated for each row.

¢ Population sizes, 2Np.

b gplitting time scaled by 6, and the splitting time itself is the product of time in
generations and mutation rate per generation.

“Migration rate scaled by 6.

¢ Summary of the 50 distances from true to mean assignments using IMa2 (IM) and
STRUCTURAMA (ST): The median and two quantiles (2.5% and 97.5%), within
parentheses and separated by a comma, are shown.

€ The number of cases in which the distance from IMa2 is shorter than that from
STRUCTURAMA.

fThe number of cases in which the distance from IMa2 is longer than that from
STRUCTURAMA.

9 The number of cases in which the two distances are equal.

mate were also those in which it was difficult to estimate
demographic parameters.

Simulation set 4: Table 5 shows results for inferring the
tree with three populations, using the three-point-turn up-
date, for different migration rates and splitting times. As
expected, the probabilities for the correct tree were highest
for lower migration rates and when the time between the
two splitting events was greater.

Real data analysis

Mouse data set of Geraldes et al. (2008): Both IMa2 and
STRUCTURAMA estimated the true assignment correctly.
The average squared distance of the assignment to posterior
samples for IMa2 was 0.6. The average squared distance
using STRUCTURAMA was considerably higher at 9, which



Table 4 The result of simulation 3 for assessing joint estimation of assignment and demographics

2 (M2, M) 0.05 0, 0) 0.10 (0.5, 0.5)
assignment? fixed variable fixed variable
Distance®(0) NA 13.68 NA 6.64
(5.225, 19.775) (1.225, 17)
Splitting time” 0.05 0.014 0.074 0.03
(0.006, 0.122) (0.002, 0.102) (0.022, 0.198) (0.002, 0.178)
04(1.0)9 0.845 0.755 0.745 0.695
(0.255, 4.665) (0.385, 9.675) (0.315, 2.535) (0.245, 9.475)
0,(3.0) 1.665 1.245 1.945 1.525
(0.695, 9.615) (0.555, 9.695) (0.815, 9.405) (0.595, 9.645)
0a(2.0) 1.475 1.565 1.515 1.555

(0.925, 2.555)

(0.915, 2.515)

(0.935, 2.635)

(0.985, 2.605)

For each simulation set the estimates with 2.5% and 97.5% quantile values are given for partition distances and demographic parameter estimates from 50 independent

simulations.

? Splitting time of the two-population IM model. The three true values of splitting time are shown in the column headings.

b Trye migration rate from population 1 to 2.

“True migration rate from population 2 to 1.

9 Assignment is fixed or variable in the model.

€ Distances between the mean assignment and the true assignment.
fSplitting time estimates.

9 Size of population 1: The true value is 1.0.

h'Size of population 2: The true value is 3.0.

"Size of the ancestor of populations 1 and 2: The true value is 2.0.

was equivalent to a standard deviation of three individuals
having assignment different from the mean assignment. In
a model in which population assignment was an unknown,
the estimated demographic parameter values were similar to
those obtained in a model in which population assignment
was fixed (Table 6). This demonstrated that assignment
could be studied jointly with demography, but was not sur-
prising in this case because population assignment was es-
timated correctly with low uncertainty. Population size of
M. domesticus was estimated to be smaller than half the
population size of M. castaneus. Their ancestor was estimated
to be smaller in population size than M. castaneus and larger
than M. domesticus. The migration rate was estimated to be
nonzero in the direction of M. domesticus to M. castaneus.
These patterns were very similar to those reported by Geraldes
et al. (2008) for the full data set for these species.

Chimpangzee data of Fischer et al. (2006) under an island
model of population structure: In Table 7 the column la-
beled “IMa2” shows the mean assignment for these data
under an island model for four populations. While most
individuals were assigned to their reported subspecies,
IMa2 assigned East African common chimpanzee individuals
Alley and Sultana to the same population as all of the Cen-
tral African chimpanzee individuals. The average squared
distance from the mean assignment under IMa2 was 11,
corresponding to a standard deviation of 3.31 individuals.
Individual assignment uncertainties for the East and Central
African chimpanzees were larger than those for the bonobo
and West African populations, with bonobos having the
smallest assignment uncertainties. Three chimpanzees that
were of higher individual assignment uncertainty were Al-
ley, Judy, and Sultana among which Alley and Sultana were
incorrectly assigned. STRUCTURAMA was also run on the

chimpanzee data, with a setting of a maximum of four pop-
ulations. Interestingly only three populations were inferred,
with all of the Central and East African individuals esti-
mated to have come from a single population (Table 7).
The average squared distance of the mean assignment was
3. Individual assignment uncertainties for bonobo and Cen-
tral and West African populations were smaller than those
for East African populations. The four chimpanzee popula-
tions had estimated divergence times that varied over ap-
proximately an order of magnitude (Won and Hey 2005;
Becquet et al. 2007; Caswell et al. 2008; Hey 2010a). To
see whether the inclusion of the most divergent populations

Table 5 The result of simulation 4 for assessing the inference
of the tree with three populations

ma th Tree 1¢ Tree 29 Tree 39
0 0.1 0.7282 (0.2082) 0.1315 (0.1058) 0.1390 (0.1077)
0 0.2 0.5451 (0.1646) 0.2200 (0.0854) 0.2334 (0.1051)
0 0.3 0.4356 (0.1941) 0.2875 (0.1249) 0.2755 (0.1062)
0 0.4 0.3793 (0.1604) 0.3123(0.1117) 0.3070 (0.1071)
0.1 0.1 0.7217 (0.1731) 0.1359 (0.0876) 0.1411 (0.0908)
0.1 0.2 0.5386 (0.2014) 0.2462 (0.1252) 0.2139 (0.0910)
0.1 0.3 0.4480 (0.1203) 0.2874 (0.1044) 0.2634 (0.0547)
0.1 0.4 0.4177 (0.1569) 0.2981 (0.1024) 0.2828 (0.1167)
0.1 0.5662 (0.1972) 0.2249 (0.1430) 0.2076 (0.1309)
1 0.2 0.4150 (0.1547) 0.2843 (0.1205) 0.2994 (0.1208)
1 0.3 0.3948 (0.1211) 0.3044 (0.1060) 0.2993 (0.1223)
1 0.4 0.3341 (0.1225) 0.3756 (0.1226) 0.2889 (0.0947)

The proportions of one of three trees in posterior samples are shown with their

standard deviation in parentheses.

@ Migration rates between all of the pairs of populations in which migration events
are possible under each population tree.

5 The time at which the two sister populations emerge from their common ancestor.
The time at which the ancestor of all of the three populations splits is 0.5.

“The true population tree.

9 The false population trees.
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Table 6 Demographic parameter estimates and their 95% confidence intervals in parentheses with assignment fixed to the true and

assignment being a random variable using the Geraldes data set

Assignment 0,2 050 0AC mi? myq€ tf

Fixed 1.105 3.475 2.865 0.00025¢9 0.04625 1.438
(0.725, 1.675) (2.545, 5.015) (0.525, 7.975) (0.00125, 0.1787) (0.00725, 0.2072) (1.048, 4.577)

Variable 1.095 3.515 2.905 0.000259 0.03025 1.518

(0.7450, 1.675) (2.585, 5.035)

(0.555, 8.045)

(0.00175, 0.2422) (0.00325, 0.1862) (1.032, 4.433)

? Population size of M. domesticus.

b population size of M. castaneus.

€ The common ancestor’s population size.

d Migration rate into M. domesticus from M. castaneus.

€ Migration rate into M. castaneus from M. domesticus.

Time at which the common ancestor of the two populations split.

9 Corresponds to the first bin of the histogram, which represents zero.

might have contributed to the failure by STRUCTURAMA to
resolve four populations, a two-population model with
STRUCTURAMA was run with only the 20 chimpanzees of
the Central and East African populations. In this case [Table
7, column ST(2)] two populations were inferred rather than
a single population. Three East African chimpanzees, Alley,
Judy, and Sultana, were assigned to Central African chim-
panzees, and Chiquita and Clara from the Central African
population were assigned to the East African population.
The average squared distance of the assignment to the pos-
terior sample was 32. Individual assignment uncertainties
were rather large. For the case of a four-population island
model the population size estimates obtained jointly with
assignment were in three cases about one-third lower than
the values estimated under a fixed true assignment (Table
8). Central African chimpanzee population size was esti-
mated to be larger than that estimated from the fixed as-
signment presumably because IMa2 assigned a few more
individuals of the East African population to the Central
African population. However, the order of magnitude of pop-
ulation size estimates remained unchanged: Central African,
East African, bonobo, and West African populations in de-
creasing order of estimated value.

Chimpangzee data set of Fischer et al. (2006) using IM
with a population tree: With data from three subspecies
of common chimpanzees (i.e., without using the Bonobo
data) we used the JDAP algorithm to jointly estimate assign-
ment and the population tree. The resulting mean assign-
ment [see the IMa2(3) column in Table 7] was correct with
the exceptions that it allotted Alley and Judy to the Central
African population and Sultana to the East African popula-
tion. These same individuals were also uncertain in their
assignment under the island model. We also used the total
posterior sample of assignments to find the tree-constrained
mean assignment of A, which was the same as the mean
assignment of A, except that Sultana along with Alley and
Judy was misassigned to the Central African population
(data not shown). Individual assignment uncertainties of
West African chimpanzees were relatively small, and those
of East and Central African chimpanzees were large. The
true population tree was most supported by the posterior
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sample of assignments among the three population trees that
were equally likely a priori. We used each of the three sets of
genealogy samples to estimate demographic parameters for
each corresponding population tree (Table 9). The two split-
ting events were farther apart in the true population tree than
in the other wrong trees. East African population size was
underestimated, and Central African population size was
overestimated presumably because the three individuals, Al-
ley, Judy, and Sultana, of the East African population were
uncertain in their individual assignment.

Discussion

Investigators in many contexts are often faced with the
situation of having data that have multiple sources of
variation. Depending on the state of theory in the particular
field, it may be possible for these sources of variation to be
modeled with parameters. But without a way to simulta-
neously consider the different causes of variation, analyses
may need to be done in a piecemeal fashion. For example,
an analysis may begin with the estimation of just one part of
the full model and then proceed by plugging this estimate
into a second analysis to address a different part of the
model. In this way a series of conditional estimates can be
obtained, all but the first of which are at added risk of error
because of conditioning on previous estimates. In just this
way it is common for investigators to first estimate pop-
ulation assignment, using a method that maximizes Hardy—
Weinberg and linkage equilibria, and then use these esti-
mates to conduct additional analyses (e.g., Sacks et al.
2004; Coulon et al. 2006; Bergl and Vigilant 2007).

The methods described here permit investigators to avoid
a series of separate but interdependent analyses and to
jointly study population assignment and demographic his-
tory. In addition to estimated assignments and estimates of
demographic parameters, investigators can ask how un-
certainty in assignment varies across the demographic
history that has been estimated. It is expected that recently
formed populations may be estimated with less certainty;
but by studying the age of population formation together
with assignment, this interaction can be examined directly.
Similarly populations that have been exchanging genes may



Table 7 Population assignment of chimpanzees (three subspecies) and Bonobos

Individual Reference? IMa2° ST< ST(2)? IMa2(3)e
Bono 1 1 0.000000 1 0.000900

Catherine 1 1 0.000800 1 0.000700

Joey 1 1 0.000850 1 0.000300

Kombate 1 1 0.000000 1 0.000300

Kosana 1 1 0.000050 1 0.003000

Sandy 1 1 0.000050 1 0.000100

Ulindi 1 1 0.000800 1 0.000200

Yasa 1 1 0.000750 1 0.000400

Zorba 1 1 0.000050 1 0.000800

Akila 2 2 0.040275 2 0.012300 1 0.151200 1 0.043350
Alley 2 3 0.318325 2 0.021200 2 0.335100 2 0.243950
Amizero 2 2 0.025200 2 0.005500 1 0.098000 1 0.028850
Annie 2 2 0.032100 2 0.024200 1 0.096300 1 0.030200
Eva 2 2 0.083275 2 0.003200 1 0.319600 1 0.162800
Judy 2 2 0.567625 2 0.042100 2 0.313800 2 0.432500
Mary 2 2 0.082400 2 0.002300 1 0.324100 1 0.156850
Mimi 2 2 0.032325 2 0.003400 1 0.170000 1 0.040700
Mzee 2 2 0.084200 2 0.001800 1 0.319900 1 0.159950
Sultana 2 3 0.434900 2 0.044700 2 0.316900 1 0.561900
Chiquita 3 3 0.062750 2 0.046700 1 0.388700 2 0.136050
Clara 3 3 0.055550 2 0.053100 1 0.435000 2 0.123300
Dodo 3 3 0.015375 2 0.042000 2 0.170000 2 0.103700
Henri 3 3 0.009850 2 0.054500 2 0.141000 2 0.076850
lvindo 3 3 0.019525 2 0.055900 2 0.166200 2 0.089650
Makata 3 3 0.082000 3 0.568300 2 0.236200 2 0.135800
Masuku 3 3 0.027925 2 0.043900 2 0.183500 2 0.108750
Moanda 3 3 0.102475 2 0.108100 2 0.483100 2 0.270950
Noemie 3 3 0.016125 2 0.043500 2 0.167600 2 0.093750
Ntoum 3 3 0.337625 2 0.081600 2 0.210400 2 0.260200
Frits 4 4 0.004050 3 0.003200 3 0.000550
Hilko 4 4 0.003575 3 0.003100 3 0.000750
Louise 4 4 0.216425 3 0.021300 3 0.000250
Marco 4 4 0.003525 3 0.000800 3 0.000500
Oscar 4 4 0.003500 3 0.000600 3 0.000500
Regina 4 4 0.003500 3 0.000400 3 0.000350
Socrates 4 4 0.005650 3 0.000900 3 0.000250
Sonja 4 4 0.003575 3 0.000600 3 0.000350
Yoran 4 4 0.003925 3 0.000600 3 0.000350
Yvonne 4 4 0.056800 3 0.006600 3 0.000650

Open cells indicate individuals that are not included in the analyses.

? Reported assignment (Fischer et al. 2006) 1 for bonobos, 2 for East African, 3 for Central African, and 4 for West African chimpanzees.

b Mean assignment and uncertainty inferred using IMa2 with the island model. We compare each of the posterior sampled assignments with the mean assignment to
compute the partition distance. The partition distance is the number of individuals that have to be removed so that the two assignments are equivalent. The assignment
uncertainty of an individual is the proportion of sampled assignments in which the individual is removed.

“Mean assignments and uncertainty using STRUCTURAMA.

9 Mean assignments and uncertainty using STRUCTURAMA with East and Central African chimpanzees.

€ Mean assignments and uncertainty inferred using IMa2 with the tree model.

give rise to data that are not easily assigned, but neverthe-
less it is possible to study assignment and gene exchange
together.

The isolation-with-migration model is flexible with
regard to mutation models and demographic histories,
particularly when multiple sampled populations are in-
cluded. However, the general approach that we describe,
of including population assignment as part of the genealogy
in an MCMC analysis, is one that could be adapted to other
kinds of demographic models. Recently, Yang and Rannala
(2010) described a method for jointly estimating phylogeny,
assignment, and population size parameters. Their method

assumes that there has been no migration, unlike the
applications described here, but it can be applied to data
sets with more populations and a larger phylogeny (with the
aid of a user-supplied guide tree) than described here (Yang
and Rannala 2010).

These methods are also flexible in that it is straightforward
to include both data from individuals with unknown assign-
ment and data from individuals whose population assignment
status is known. In this way the general assignment problem
can be seen to include both the classification of individuals to
previously identified populations (a procedure that is in some
contexts known as an assignment test) and the discovery of
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Table 8 Population sizes and their 95% confidence intervals in parentheses under a four-population island model with assignment fixed
to the true and assignment being a random variable using Fischer's data set

Assignment 0.2 050 05°¢ 0,9

Fixed 0.1275 0.1775 0.4275 0.1175
(0.0575, 0.3325) (0.0875, 0.4225) (0.2475, 0.8075) (0.0425, 0.3075)

Variable 0.0925 0.1075 0.4425 0.0875

(0.0425, 0.2625)

(0.0475, 0.5775)

(0.2075, 0.9875) (0.0375, 0.2575)

? Population size of bonobos.

b population size of East African Chimpanzees.

¢ Population size of Central African Chimpanzees.
9 population size of West African Chimpanzees.

previously unidentified populations. At one extreme we
might have a DNA barcoding problem, where an assignment
of a single individual is to be determined against a backdrop
of previously assigned data (Matz and Nielsen 2005; Nielsen
and Matz 2006), and at the other extreme an investigator
might have little previous knowledge of how many popula-
tions exist.

Our studies with simulated and real data show that it is
possible to estimate assignment together with demographic
history and that assignment estimates are improved when
they are obtained under an IM model, relative to the case
without. However, it is important to point out that the
comparisons between IMa2 and STRUCTURAMA, while
they represent a contrast of with and without a demographic
model, also include the contrast of with and without a muta-
tion model. STRUCTURAMA, like most other population as-
signment methods, uses an allelic model of variation,
whereas the simulated and real data in the present studies
were based on mutation models for DNA sequence variation.
To run STRUCTURAMA, or any similar allele-based method,
requires pruning the data so that each distinct DNA haplo-
type is reduced to an allelic representation. Thus we do not
know how much of the difference in assignment estimation
between STRUCTURAMA and IMa2 is due to the inclusion
of a demographic model in the latter and how much is due
to the inclusion of a mutation model.

Assignment and phylogeny

In any demographic model with more than two populations,
and that includes a phylogenetic component, the estimation
of assignment entails the estimation of the population
phylogeny. In this article we studied this issue in detail for
the case of three-population models. This required that
we extend the ideas of partition distance (Almudevar and
Field 1999; Gusfield 2002; Konovalov et al. 2005) and
mean assignment (Huelsenbeck and Andolfatto 2007) to
tree-constrained partition distance and tree-constrained
mean assignment. We are then able to use tree-constrained
partition distances in the JDAP algorithm to jointly estimate
assignment, demographic history, and population phylog-
eny. When we applied these methods to three subspecies
of chimpanzees, they returned the true phylogenetic tree
and simultaneously provided population assignments that
were more accurate, and that came with less uncertainty,
than those found using the STRUCTURAMA program.

Limitations

A major limitation of the methods presented here is that
they are computationally quite slow, particularly when
compared to the speed of programs implementing allele-
based methods. The run time for the two real data sets
ranged from 40 to 129 hr, many times that required by

Table 9 Population size and splitting time estimates and their 95% confidence intervals in parentheses under the tree model using the

three chimpanzee populations

Tree A2 Counts (%) 0.6 0,° 059 04° 05 t,9 th
(1,2),3) F NA 0.2430 0.7630 0.143 0.571 0.207 0.08175 0.1703
(0.091, 0.925) (0.325, 1.931) (0.069, 0.461) (0.183, 1.939) (0.021, 0.889) (0.02625, 0.2003) (0.09075, 0.4627)
1,2),3) V 14,706 0.1610 1.101 0.1470 0.5570 0.2250 0.06225 0.1598
(73.5) (0.063, 1.721) (0.357, 1.957) (0.061, 0.443) (0.159, 1.931) (0.027, 0.851) (0.00825, 0.2003) (0.08025, 0.4148)
1,3),2) V 3,141 0.2030 1.405 0.1030 0.089 0.2910 0.09225 0.1462
(15.7) (0.087, 1.587) (0.527, 1.963) (0.041, 0.747) (0.065, 1.945) (0.071, 0.739) (0.03975, 0.2303) (0.06375, 0.2873)
2,3,1 V 2,153 0.2490 1.289 0.1090 0.8310 0.2170 0.1118 0.1177
(10.8) (0.125, 1.451) (0.515, 1.961) (0.051, 0.331) (0.129, 1.951) (0.051, 0.751) (0.04575, 0.2437) (0.06975,0.3008)

2 F, fixed assignment; V, variable assignment.

b population size of East African Chimpanzees.

¢ Population size of Central African Chimpanzees.

9 Population size of West African Chimpanzees.

€ Population size of ancestor of two ingroup populations.

fPopulation size of the ancestor of all three populations.

9 Time at which the common ancestor of two ingroup populations split.

h Time at which the common ancestor of the three chimpanzee populations split.

574 S. C. Choi and J. Hey



STRUCTURAMA for the same data. When included as part
of the Markov chain simulation, population assignment takes
time to update and can significantly impede the mixing of the
Markov chain. The mixing issue can be significantly mitigated
by the addition of Metropolis-coupled chains, but the result-
ing analysis can be quite slow. It is for this reason that the
analyses described here are for modestly sized data sets.

The assumptions of the IM models adapted here all stem
from those adopted by Nielsen and Wakeley (2001) in their
original MCMC method for this model. In particular these
include the assumptions of selective neutrality, free recom-
bination within loci, and zero recombination within loci.
Allele-based methods that minimize Hardy-Weinberg also,
at least implicitly, assume that selection has not been a factor
causing a departure from Hardy-Weinberg. They do not re-
quire an assumption of no recombination within loci, be-
cause in an allelic context intragenic recombination is just
an additional source of new alleles, and they can be ex-
tended to handle cases of restricted recombination between
loci (Falush et al. 2003). Strasburg and Rieseberg (2010)
examined the case of a failure of the assumption of zero
recombination in IM analyses using the IMa program (Hey
and Nielsen 2007) and found that the method was fairly
robust to modest levels of recombination when data are re-
duced to nonrecombining blocks, as determined by the four-
gamete test (Hudson and Kaplan 1985).
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Appendix A

Genealogy Updating Using Estimates of the Population
Mutation and Migration Parameters From the
Current Genealogy

The probability of a genealogy, given parameter values
under a two-population IM model, is given in Equation 15 of
Hey and Nielsen (2007) and in (Al) of the supporting in-
formation of that article. This probability is a function of the
numbers of a series of terms calculated from the genealogy,
including coalescent events (cy, ¢, Ca), total coalescent rates
(f1, f2, fa), numbers of migration events (w1, w,), and total
migration rates (g1, g-), where the subscripts refer to the
corresponding population (A refers to the ancestral popula-
tion). By taking the derivative of this function with respect
to a parameter, we find the individual maximum-likelihood
estimates for each parameter associated with that geneal-
ogy. The estimate of 0, is derived as

2)(']‘;1 c1>0
o={.
17 ) a2xf, =0 >0

0 C1:0,f1:O

and for the parameter m, as

— w1>0
81
7?1
M=9= w; =0, 4>0
81
Mmin w1 = O7 g1 = 0.

A nonzero value of 1.0 is used for mp,;, because a value of
zero violates the MCMC criterion that an update to the ge-
nealogy be reversible.

With values for the demographic parameters, we used
expressions (3) and (7) of Beerli and Felsenstein (1999) to
simulate the time to the next event in the genealogy. We
choose an external branch of a gene tree and label the tip
of the branch to other populations at random. We detach the
branch from the genealogy. We divide the time duration from
the present to the root of the genealogy by events including
coalescent, migration, and population splits. For each time
interval starting at the present we sample the next event
and time using expression (3) of Beerli and Felsenstein
(1999). If the time sampled is larger than the current time
interval, we skip the current time interval and move to the
next time interval. The simulation of events ends in a coales-
cent event. If the simulation does not complete even in the
last time interval before the time at the root, we use expres-
sion (7) of Beerli and Felsenstein (1999) to sample the next
event and time. One difference between the case of Beerli
and Felsenstein (1999) and that of ours is that we need to
consider population splitting events. In other respects the
procedure follows Beerli and Felsenstein (1999).

Appendix B

Population Relabeling Preserves the Posterior
Distribution of Genealogy and Splitting Time

We wish to show that permutations of assignment labels
change neither the prior distribution nor the posterior
distribution of a genealogy under a two-population IM
model. The following derivation is based on Equation Al
in the supporting information to Hey and Nielsen (2007)
that describes the terms in the probability of genealogy
and population splitting time given model parameters
(G, t|®), where @ = {64, 05, 0o, m1, my}. For calculating
the prior probability, all of the information in a genealogy in
an IM model can be described as a vector with elements
being numbers of coalescent events (c), total coalescent
rates (f), numbers of migration events (w), and total migra-
tion rates (g) or G = (c1, f1, W1, €1, €2, f2, W2, &2, Ca, fa) (Hey
and Nielsen 2007) (see Appendix A). We relabel the gene-
alogy by swapping the terms for populations 1 and 2,

V(G) = V(Clyflgwl,gl,C27f2,W2,g2,CA,fA)

= (C25f27w2ag2>Clvflvwlag1>CAafA)7

where v is an operator that relabels the ordered list of numbers
that represents the given genealogy. The probability of gene-
alogy given model parameters (G| ®) may differ from that of
the relabeled genealogy, w(v(G)|®), given the same model
parameters. However, if the prior probabilities for the param-
eters for population 1 are the same as those for population 2
[ie., w(01) = w(0) and w(m;) = w(my)], then the prior of the
genealogy is equal to the prior of the relabeled genealogy:

7(v(G)) = / 7(4(G)|®)m(®)dO
_ / 7(G|®)(0)dO — = (G).

Turning to the posterior density, we note that the like-
lihood does not depend on assignment, f(X|G) = f(X|v(G)),
and therefore the posterior distribution of the genealogy
given the data is invariant to label permutation:

fX|G)w(G)
fX)

_fX(G)7(v(G))
fX)

=7w(v(G)X).

w(GX) =

Although we assume the two-population IM model, the
same argument applies to the multipopulation island model.
In the case of a three-population IM model there are three
possible labeled tree topologies, but the symmetry applies
only to the two sister populations. In general for trees with
multiple populations we can relabel genealogies only via
swapping for populations that are each other’s sisters.
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