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Abstract

We present a new Bayesian method for estimating demographic and phylogenetic history using population genomic
data. Several key innovations are introduced that allow the study of diverse models within an Isolation-with-Migration
framework. The new method implements a 2-step analysis, with an initial Markov chain Monte Carlo (MCMC) phase that
samples simple coalescent trees, followed by the calculation of the joint posterior density for the parameters of a
demographic model. In step 1, the MCMC sampling phase, the method uses a reduced state space, consisting of coa-
lescent trees without migration paths, and a simple importance sampling distribution without the demography of
interest. Once obtained, a single sample of trees can be used in step 2 to calculate the joint posterior density for model
parameters under multiple diverse demographic models, without having to repeat MCMC runs. Because migration paths
are not included in the state space of the MCMC phase, but rather are handled by analytic integration in step 2 of the
analysis, the method is scalable to a large number of loci with excellent MCMC mixing properties. With an implemen-
tation of the new method in the computer program MIST, we demonstrate the method’s accuracy, scalability, and other
advantages using simulated data and DNA sequences of two common chimpanzee subspecies: Pan troglodytes (P. t.)
troglodytes and P. t. verus.

Key words: isolation-with-migration model, importance sampling, Markov chain representation, model comparison,
likelihood ratio test.

Introduction

In the study of diverging populations and species, a common
goal is to disentangle the conflicting signals of prolonged ge-
netic drift, which elevates divergence, and gene exchange,
which removes it. A widely used conceptual framework for
such divergence problems is the Isolation-with-Migration
(IM) model, which accounts for genetic drift with parameters
for effective population size and splitting time, and for gene
exchange with migration rate terms (fig. 1a). IM models have
been widely used to study the evolutionary divergence of a
very wide range of organisms (Moodley et al. 2009; Won and
Hey 2005; Berner et al. 2009; Hey 2010a; Geraldes et al. 2008;
Cong et al. 2015; Pinho and Hey 2010).

To connect data, in the form of aligned gene or genome
sequences, to the parameters of an IM model, virtually all
methods use some form of integration over latent genealogies
(Felsenstein 1988; Griffiths 1989). A genealogy includes both a
coalescent tree, that is an ultrametric binary tree that de-
scribes a possible history of common ancestry of a sample
of gene copies, and a history of migration events between
populations for each of the branches in the tree (Beerli and
Felsenstein 1999). Genealogies are not part of the data, nor
typically part of the final results. However, because we can
calculate the probability of aligned sequences given a geneal-
ogy (using a mutation model) and because we can calculate

the probability of a genealogy given a demographic model
(e.g., the parameters for an IM model), likelihood or Bayesian
methods for fitting demographic models to aligned DNA se-
quences all include some kind of machinery for integrating
over genealogies (Kuhner et al. 1995; Wilson and Balding
1998; Nielsen and Wakeley 2001; Nielsen 2000; Lopes et al.
2009; Hey and Nielsen 2007; Bahlo and Griffiths 2000; Griffiths
and Tavaré 1994).

In principle, genealogy sampling under IM models can
enable a rich model-based approach to demographic and
phylogenetic analyses. However on the practical side, infer-
ence methods that use IM models frequently face significant
computational and statistical challenges. Because of the in-
clusion of migration events, the space of possible genealogies
for a given data set is vastly larger than the space of coalescent
trees for the same data. As a practical matter it is difficult to
develop a method that adequately samples the space of ge-
nealogies, particularly for larger data sets. Likelihood and
Bayesian methods for fitting complex demographic models
are generally slow and typically cannot be applied to large
population genomic data sets (Kuhner 2008).

Recently, progress has been made on separating the mi-
gration events from the genealogy to allow for calculating the
probability distribution of a simpler coalescent tree under an
IM model (Zhu and Yang 2012; Andersen et al. 2014; Hobolth
et al. 2011). By representing the history of coalescence and
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migration using a Markov chain, it becomes possible to inte-
grate over all possible migration histories to calculate the
prior probability of a coalescent tree. For example, Zhu and
Yang (2012) developed a maximum likelihood estimation
under an IM model for three DNA sequences using the prob-
ability of a coalescent tree.

Here, we address several problems associated with
genealogy-sampling approaches to demographic inference
and present a new Bayesian Markov chain Monte Carlo
(MCMC) method for demographic/phylogenetic models in-
cluding IM models. Our new approach allows for the study
of large numbers of loci and can be used for a wide range of
demographic models, while allowing for likelihood ratio tests
(LRTs) of nested models using a posterior density, proportional
to the likelihood, that is joint for all parameters in the model.

To improve the MCMC process and to facilitate the inte-
gration over genealogies, we decompose a genealogy G into
(1) coalescent tree, a simple bifurcating tree, k (fig. 1b), and
(2) the remaining informationM, which includes horizontal
migration paths of genes between populations. We derive
explicit formulas for the probability distribution of a coales-
cent tree using a Markov chain as a representation of gene-
alogy and matrix exponentiation. For efficient MCMC
simulations of coalescent trees, we employed importance
sampling in which trees are sampled from a tractable prob-
ability distribution (called an importance sampling distribu-
tion), rather than from the coalescent probability conditional
on the demographic model of interest. Then in the numerical
integration over k, each value of k is weighted by the inverse
of its importance sampling distribution. This adjustment ac-
counts for having sampled from the importance sampling
distribution and yields an approximation converging to the
exact integration over k as more trees are sampled (Robert
and Casella 2013). For the importance sampling distribution,
we consider posterior probability distributions in which priors
on k are free of the underlying demographic model. Because
the coalescent trees do not include migration events and are
not constrained by demographic epochs, the MCMC simu-
lation is largely free of mixing difficulties and works well with
large numbers of loci.

The computer program, MIST (for “model inference from
sampled trees”), implements the new method for multiple
processes in parallel. The program MIST is freely available at
https://github.com/yujin-chung/MIST.git Using simulated
DNA sequences, we demonstrate the use of importance sam-
pling distributions and assess the performance of the method
in terms of accuracy and computing time. We also demon-
strate the application of different demographic models to a
single MCMC sample, by using models with and without an
unsampled “ghost” population. We also examined false pos-
itives of LRTs for migration rates when data show low diver-
gence. Finally, we apply the method to population genomic
samples from two subspecies of common chimpanzees
(Prado-Martinez et al. 2013), Pan troglodytes (P. t.) troglodytes
and P. t. verus, and compare the results to those from previ-
ous other studies.

New Method
The new method is described for a basic 2-population isola-
tion with migration (IM) model (fig. 1a) with the sizes of two
sampling populations and their common ancestral popula-
tion (h1, h2, and ha), two migration rates between two sam-
pling populations (m1 and m2), and the splitting time of two
populations from their common ancestral population (TS). A
2-population IM model with six parameters
(W ¼ ðh1; h2; ha;m1;m2; TSÞ) is easily adapted to variations
of this model, such as those shown in figure 2. Also it should
not be difficult to extend the approach to models for data
that have been sampled from more than two populations
(Hey 2010b).

Following Felsenstein (1988), the likelihood of W can be
obtained by integrating out all possible genealogies in the
model:

LðWjDÞ ¼ pðDjWÞ ¼
ð

pðDjGÞpðGjWÞdG; (1)

where pðDjGÞ is the probability of genetic data D given ge-
nealogy and pðGjWÞ is coalescent probability of genealogy
given a demographic model. Considering a Bayesian

A B C D

FIG. 1. (A) An example of a demographic model with a genealogy. A 2-population isolation with migration (IM) model includes six parameters:
population sizes, h1; h2 and ha, migration rates, m1 and m2, and splitting time Ts. The graph in black lines depicts a genealogy (G) including
coalescent events at time t1 and t2, respectively, (vertical paths of genes) and migration events (horizontal paths). (B) The coalescent tree (k1) of
genealogy G includes the same coalescent events on G. (C) A coalescent tree k2 whose probability is same as that of k1. (D) Genealogy and
coalescent tree with population labels.
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approach, the posterior distribution of demographic param-
eters W, given genetic data, is

pðWjDÞ / pðDjWÞpðWÞ;

where pðWÞ is a prior distribution under which parameters
are independent and uniformly distributed (i.e., pðWÞ is con-
stant over a specified range of values for W).

In considering how to ameliorate the difficulties of
working with genealogies it is important to note two
things about how a history of migration events impacts
the data. First, from a coalescent perspective, the effect of
migration events in the true history of a set of genes is to
shape the times of common ancestry of those genes.
Second, the calculation of the likelihood pðDjGÞ depends
only on the vertical branch lengths and topology of G and
not on the migration events in G. We can decompose a
genealogy into two parts, a coalescent tree k and migra-
tion eventsM, such that G ¼ ðk;MÞ (fig. 1a). Migration
will have shaped the coalescent tree, but when the coa-
lescent tree is known, the data are independent of M:
pðDjk;MÞ ¼ pðDjkÞ. Then using this fact, the integra-
tion in equation (1) separates into two integrations:

pðWjDÞ / pðWÞ
ð

pðDjkÞpðkjWÞdk; (2)

where

pðkjWÞ ¼
ð

pðk;MjWÞdM: (3)

Expression (2) is our target, the posterior density for the
model parameters. Below we provide a formula for

computing analytically the integration overM, in equation
(3) and we develop a new MCMC approach using impor-
tance sampling to approximate the integration over k in
equation (2).

Exact Integration over Migrations: Markov Chain
Representation
The exact integration over migration paths in equation (3) is
done by computing transition probabilities in a Markov chain
representation of a genealogy G. To reduce the state space of
the Markov chain representation of a genealogy G, we intro-
duce a simplified genealogy in which sampled gene copies are
labeled only by the population they were sampled from. We
define a function . that replaces the tip labels on G or k by
the label of their respective sampled population. The geneal-
ogy or coalescent tree with population labels is denoted as
.ðGÞ ¼ Gp or .ðkÞ ¼ kp, respectively. For example, k1 and
k2 in figure 1 have different individual tip labels, but are
converted to the same coalescent tree with population
labels: .ðk1Þ ¼ .ðk2Þ ¼ kp. Moreover, the probabilities of
k1 and k2 are the same: pðk1jWÞ ¼ pðk2jWÞ. In general, all
trees that can be converted into the same coalescent tree
using population labels, will share the same probability (see
Lemma in the supplementary note, Supplementary
Material online), and this needs only to be calculated
once. Using this property and the following Theorem 1,
we compute pðkjWÞ from pðkpjWÞ.

Theorem 1 Consider a m-population IM model with pa-
rameters W. Let Kp ¼ fkj.ðkÞ ¼ kpg be the collection of
coalescent trees that are converted into the same coalescent
tree with population labels kp. Then its size is

FIG. 2. The new method schematic. In step 1 coalescent trees for the aligned DNA sequences are sampled from an MCMC simulation using an
importance sampling distribution of trees that is free of a demographic model of interest. In step 2, the set of sampled coalescent trees is used for
the approximation of the joint posterior density under a demographic model of interest. Optimization of the joint posterior density provides an
estimate of model parameters. The same set of trees from step 1 can be used repeatedly to study different demographic models.
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jKpj ¼
Ym
i¼1

ni!=
Y
v2V

SðvÞ (4)

where V is the set of vertices of kp that has two tips as descen-
dants (so called "cherry"), ni is the number of samples from
population i (i ¼ 1; . . . ;m) and SðvÞ is 2 if the two descen-
dants (tips) of v have the same labels; 1 otherwise. The prob-
ability density of k 2 Kp is

pðkjWÞ ¼ pðkpjWÞ=jKpj:

The proof of Theorem 1 is provided in the supplementary
note, Supplementary Material online.

To compute pðkpjWÞ we use a Markov chain representa-
tion of Gp in which time is separated into multiple epochs
bounded by coalescent times and population splitting times.
For example, in figure 1d, two epochs, ð0; t1� and ðt1; t2�, are
defined by two coalescent events at time t1 and t2, respec-
tively. The genealogy in each time epoch can be expressed as a
sequence of transitions (Asmussen 2003) among transient
states (migration events) and into absorbing states (coales-
cent events). A state s of a Markov chain fXðtÞg is a subset
of fðl; qÞ:aja � 0; l ¼ 1; . . . ; k; q ¼ 1; . . . ; pg, where a in ð
l; qÞ:a denotes the number of lineages with label l in popu-
lation q and k is the total number of kinds of lineages’ labels.
Note that tips on Gp or kp may have the same labels, but
ancestral lineages have distinct labels. In figure 1, the lineages
on genealogy Gp have labels 1 to 4 and all transient states in
each epoch are in table 1. The initial state of Gp at time 0 is s2,
the state right before the first coalescent event at time t1 is s4,
and the state right after the event is s02. If a state has an
element ðl; qÞ:0 of zero number of lineages for some l and
q, then, for an efficient expression, we consider the states
with and without the element with no lineage are identical.
For example, s1 ¼ fð1; 1Þ:2; ð2; 1Þ:1g ¼ fð1; 1Þ:2; ð2; 1Þ:1;
ð1; 2Þ:0g.

In general, the transition rate qi;j from state si to state sj is
as follows:

(1) if sinsj ¼fðl; pÞ :a; ðl; qÞ :bg; sjnsi ¼fðl; pÞ :ða� 1Þ;
ðl; qÞ:ðbþ 1Þg (i.e., a lineage with label l moves from
population p to q), then qi;j ¼ amp;q, where mp;q is
the migration rate from population p to population
q backward in time, and the set difference vnw is
defined by vnw ¼ fx 2 vjx 62 wg:

(2) if sj ¼ A (the absorbing state), X1 ¼ fða; p; lÞjðl; pÞ:a
2 si; a � 2g; X2 ¼ fða; b; p; l; l0Þjðl; pÞ:a 2 si; ðl0; pÞ
:b 2 si; a � 1; b � 1; l > l0g, and either X1 or X2 is not
an empty set (i.e., two lineages with the same label l or
different labels l and l0 coalesce), then

qi;j ¼
P
ða;p;lÞ2X1

a

2

 !
�p
2 þ

P
ða;b;p;l;l0Þ2X2

ab
�p
2 ;

(3) if i ¼ j, then qi;j ¼ �
P

k 6¼i qi;k;
(4) otherwise, qi;j ¼ 0.

For example, the state change from s1 ¼ fð1; 1Þ:2; ð2; 1Þ
:1g ¼ fð1; 1Þ:2; ð2; 1Þ:1; ð1; 2Þ:0g to s3 in table 1 means

that a lineage with label 1 migrates from population 1 to
2. The transition rate for the event is q1;3 ¼ 2m1, since s1

ns3 ¼ fð1; 1Þ:2; ð1; 2Þ:0g and s3ns1 ¼ fð1; 1Þ:1; ð1; 2Þ:1g.
Similarly, the formulas are applied for every transition
event. The transition rate matrices Q1 and Q2 for Gp in
epoch ð0; t1� and ðt1; t2�, respectively, are below:

s1 s2 s3 s4 s5 s6 A

Q1 ¼

� m1 2m1 0 0 0 6=h1

m2 � 0 2m1 0 0 2=h1

m2 0 � m1 0 0 2=h1

0 m2 m2 � 0 m1 2=h2

0 0 2m2 0 � m1 2=h2

0 0 0 2m2 m2 � 6=h2

0 0 0 0 0 0 0

0
BBBBBBBBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCCCCCCCA

;

and

Table 1. The Possible Transient States of Markov Chains As
Representatives of Gp in Epoch ð0; t1� and ðt1; t2�, Respectively.

Epoch 1 (0, t1]

State Notation

Pop1 Pop2

1,1,2 s1 ¼ fð1; 1Þ:2; ð2; 1Þ:1g

1,1 2 s2 ¼ fð1; 1Þ:2; ð2; 2Þ:1g

1,2 1 s3 ¼ fð1; 1Þ:1; ð2; 1Þ:1; ð1; 2Þ:1g

1 1,2 s4 ¼ fð1; 1Þ:1; ð1; 2Þ:1; ð2; 2Þ:1g

2 1,1 s5 ¼ fð1; 2Þ:2; ð2; 1Þ:1g

1,1,2 s6 ¼ fð1; 2Þ:2; ð2; 2Þ:1g

Epoch 2 (t1, t2]

State Notation

Pop1 Pop2

1,3 s01 ¼ fð1; 1Þ:1; ð3; 1Þ:1g

1 3 s02 ¼ fð1; 1Þ:1; ð3; 2Þ:1g

3 1 s03 ¼ fð1; 2Þ:1; ð3; 1Þ:1g

1,3 s04 ¼ fð1; 2Þ:1; ð3; 2Þ:1g

NOTE.—The left column in each table visualizes the state of (1) three lineages: two with same
label 1 and one with label 2 in Epoch 1 and (2) two lineages with label 1 and 3 in Epoch 2.
The right column in each table shows the corresponding notation of a Markov chain state.
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s01 s02 s03 s04 A0

Q2 ¼

� m1 m1 0 2=h1

m2 � 0 m1 0

m2 0 � m1 0

0 m2 m2 � 2=h2

0 0 0 0 0

0
BBBBBBBBBBBB@

1
CCCCCCCCCCCCA
;

where m1 ¼ m1;2; m2 ¼ m2;1, and diagonal elements are set
to the negative sum of the corresponding row. Then the
probability of state change from si to sj during time t1 is
PrðXðt1Þ ¼ sjjXð0Þ ¼ siÞ ¼ ðet1Q1Þi;j, where eQ is a matrix
exponential and ðQÞi;j is (i, j) entry of matrix Q.

Because the coalescent tree kp does not include informa-
tion about the populations in which coalescent events oc-
curred, computing pðkpÞ requires that we consider all the
possibilities. The possible states right before the first coalescent
event are s1 (all lineages in Population 1), s3 (the coalescing
lineages only in Population 1), s4 (the coalescing lineages only
in Population 2), and s6 (all lineages in Population 2). The
corresponding states right after the event are s01; s03; s02, and
s04, respectively. The probability of the case that s4 is the state
right before the first event is PrðXðt1Þ ¼
s4jXðt0Þ ¼ s2Þ 2

h1
PrðXðt2Þ ¼ A0jXðt1Þ ¼ s02Þ. In a similar

way, we compute the probability of each possible way and
the probability of kp takes account of all possible cases:

pðkpjWÞ ¼X
p1¼1;2

X
p3¼1;2

fPrðXðt1Þ ¼ fð1; p1Þ:1; ð3; p3Þ:1gjXð0ÞÞ

�PrðXðt2Þ ¼ A0jXðt1Þ ¼ fð1; p1Þ:1; ð3; p3Þ:1gÞg:

Using this approach, we can compute the probability of any
coalescent tree under an IM model.

A ranked tree topology is a topology with ordered internal
nodes (Semple and Steel 2003), and for coalescent trees that
share a ranked topology, the corresponding possible transi-
tion rate matrices are the same. For efficient computation, we
have a list of ranked tree topologies with population labels,
and save the matrix decomposition of possible transition rate
matrices for reuse. In this way, by using population labels, we
can reduce the state space of a Markov chain as well as the
redundant computation of matrix decomposition.

IM Model Estimation Based on Importance Sampling
of Trees
Importance sampling is a widely used approach for working
with a distribution of interest by using another distribution that
is more tractable (Robert and Casella 2013). In our case we
desire coalescent trees sampled from equation (3) using
MCMC, but will use a far more accessible distribution to sim-
plify the MCMC phase of the analysis. If q is a probability density
from which we can generate trees easily, then we can write

pðWjDÞ / pðWÞ
ð

pðDjkÞpðkjWÞ
qðkÞ qðkÞdk; (5)

where qðkÞ > 0 if pðDjkÞpðkjWÞ > 0. The distribution q is
called an importance sampling distribution. The above inte-
gration can be estimated using n draws k1; . . . ; kn from qðkÞ
by the expression,

pðWjDÞ / pðWÞ
n

Xn

i¼1

pðDjkiÞpðkijWÞ
qðkiÞ

: (6)

We consider two distinct posterior distributions as impor-
tance sampling distributions, neither of which depends on an
underlying demographic model. The first assumes a uniform
improper prior, f1ðkÞ / 1, on the space of coalescent trees,
which consists of a finite set of tree topologies and an infinite
set of each of the branch lengths. This prior is noninformative
and does not assume any demographic model. It follows that
the sampled coalescent trees are drawn from a posterior dis-
tribution that is strictly proportional to the likelihood of the
DNA sequences: q1ðkjDÞ / pðDjkÞf1ðkÞ / pðDjkÞ: With
the infinite-sites mutation model for calculating the likelihood,
the posterior density is a proper probability distribution and,
more specifically, is a mixture of the product of gamma distri-
butions (see the supplementary note, Supplementary Material
online). When this posterior density q1ðkjDÞ is applied as an
importance sampling distribution, the ratio in the integrand of
equation (5), pðDjkÞpðkjWÞ=q1ðkjDÞ, is proportional to
pðkjWÞ. Therefore, with a sample of k1; . . . ; kn � q1ðkjWÞ,
the approximation in equation (6) is simplified as

pðWjDÞ / pðWÞ
n

Xn

j¼1

pðkjjWÞ:

By using this importance sampling distribution q1 with im-
proper prior f1, we sample coalescent trees mostly where the
likelihood is large and hence we expect this importance sam-
pler to be efficient.

The second type of importance sampling distribution that
we consider assumes a simple single population model for
which the single population size parameter, h, is integrated
out analytically. The explicit form of the prior f2ðkÞ is

f2ðkÞ ¼
ðN

0

pðkjhÞ
N dh ¼ 2k�1h

�ðk�2Þ
k Cðk� 2; hk=NÞ

N ;

whereN is a constant, k is the number of tips on k, hk ¼
Pk
i¼2

tiiði� 1Þ for t2; . . . ; tk, coalescent times on k and
Cðs; xÞ ¼

Ð1
x ts�1e�tdt, the upper incomplete gamma func-

tion. With this importance sampling distribution,
q2ðkjDÞ / pðDjkÞf2ðkÞ, the posterior density of demographic
parameters in equation (6) can be approximated as follows:

pðWjDÞ / pðWÞ
n

Xn

j¼1

pðkjjWÞ
f2ðkjÞ

;

where k1; . . . ; kn � q2ðkjDÞ.
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In overview (fig. 2), the method has two steps: in step 1,
coalescent trees are sampled from an MCMC simulation un-
der an importance sampling distribution, independent of a
demographic model of interest; while in step 2 the joint pos-
terior probability of the demographic model of interest is
calculated. Once the sample of coalescent trees has been ob-
tained, they are used to build a function for the joint posterior
density of the demographic model of interest, which in turn is
used to find the maximum a posteriori (MAP) estimate of the
model parameters. We used a differential evolution algorithm
(Price et al. 2005) to maximize the joint posterior density, but
other methods can be used. By using in step 1 a posterior
distribution as an importance sampling distribution, that is
free of the underlying demographic model, it is possible to
study diverse demographic models without having to repeat
step 1. For example, with data from two populations, the same
coalescent trees sampled in step 1 can be used to examine the
data under an IM model, an isolation model, an islands with
migration model and an IM model with an unsampled “ghost”
population (fig. 2). Another benefit is that by analytically in-
tegrating over all possible migration paths in step 2, sampling
variance of migration paths is not a source of variance in
parameter estimation or model choice as it is in methods
that sample migration paths from an MCMC simulation.

Multiple Loci and Parameterization of Mutation Rates
We consider two parameterizations of the mutation process,
one in which all loci experience the same mutation rate per site,
and a second model in which each locus has its own mutation
rate. The constant mutation rate model, in which the mutation
rate experience by a locus is proportional to its length, is quite
straightforward to implement in the MCMC sampling, even for
very large numbers of loci. Under this constant mutation rate
model, demographic parameters and coalescent times are
scaled by the mean of per-site mutation rate. Therefore, the
mutation rate is not estimated through an MCMC simulation
and the approximated posterior density is as follows:

pðWjD1; . . . ;D‘Þ / pðWÞ
Y‘
i¼1

1

n

Xn

j¼1

pðki; jjWÞ
( )

; (7)

where ki;j is the jth sampled tree for locus i from importance
sampling distribution q1. Although n coalescent trees are given
for each locus, the approximation of the posterior density in
equation (7) is computed from n‘ joint samples of coalescent
trees for ‘ loci. This is different from other MCMC-based ge-
nealogy samplers, which generate n joint samples of genealo-
gies for ‘ loci and some demographic parameters. In such cases
the estimation of demographic parameters is computed from
n joint samples of genealogies, regardless of the number of loci.
In contrast, under our new method with the same amount of
sampled trees (n trees per locus), estimates of demographic
parameters are based effectively on n‘ joint samples. Because
the number of joint samples increases exponentially with the
number of loci, ‘, and polynomially increases with the number
of sample size per locus with the degree of ‘, we expect the
method to perform well even for small values of n (i.e., small
numbers of sampled coalescent trees).

Under the locus-specific mutation rate model, each locus
has a mutation rate scalar and the product of all mutation
scalars is constrained to be 1, with demographic parameters
scaled by the geometric mean of the mutation rates across
loci (Hey and Nielsen 2004). Under this approach the poste-
rior density is approximated as

pðWjD1; . . . ;D‘Þ /
pðWÞ

n

Xn

j¼1

Y‘
i¼1

pðkij jWÞ
f2ðkijÞ

( )
:

Compared with the constant mutation rate model, the locus-
specific mutation rate model includes mutation scalars in the
Markov chain state space and requires more iterations in
MCMC simulation. The posterior surface to explore in
MCMC simulation is the joint probability of mutation scalars
and coalescent trees. With many loci, the joint surface would
be more difficult to explore, whereas in the constant muta-
tion rate model the number of loci does not affect the num-
ber of MCMC iterations.

Results

Performance of the New Method
We evaluated the performance of the new method using
computer simulations. We used ms (Hudson 2002) to simu-
late two gene copies from each of 2-population IM model with
h1 ¼ 5; h2 ¼ 1; h3 ¼ 3; m1 ¼ 0:02; m2 ¼ 0:1, and TS¼ 2
(fig. 1a), and varied the number of loci, including 10, 100, 1,000,
and 10,000. For each case, 20 replicates were generated. We
assumed an infinite sites mutation model (Kimura 1969) and
no recombination within loci, but free recombination be-
tween loci. We also assumed that all loci have the same mu-
tation rate. For each analysis we sampled 1,000 coalescent trees
per locus after 100,000 burn-in iterations and 100 thinning
iterations from the MCMC simulation. Convergence diagnos-
tics were monitored (see supplementary Notes and supple
mentary figs. S1 and S2, Supplementary Material online). In
step 2, the upper bounds of population sizes, migration rates
and splitting time were 20, 10, and 10, respectively. The opti-
mization of the joint posterior density yielded joint MAP esti-
mates for all six model parameters.

As shown in figure 3, the new method provides consistent
and asymptotically unbiased estimations. The mean of each
parameter estimate became closer to the true value (the ab-
solute bias ranges between 0.009 and 0.016 on 10,000-locus
data) and the standard errors (range: 0.0028–0.0699 on
10,000-locus data) were also substantially reduced as the
number of loci increases. The mean squared errors (MSEs)
consisting of bias and variance of estimators were strictly
decreasing with the number of loci (see supplementary table
S1, Supplementary Material online). The overall accuracy of all
parameter estimations was quite high with just 100 loci, and
estimates were very close to the true values with 1,000 or
more loci.

We also assessed the performance of MIST in terms of
computing time. At each iteration of MCMC simulation in
step 1, one coalescent tree of four gene copies from each
locus is simulated. Thus, the CPU time in serial computing
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of each iteration is proportional to the number of loci (fig. 4a).
In step 2, when the posterior probability of a given demo-
graphic model is approximated from a set of coalescent trees,
a matrix decomposition is required to compute the proba-
bility of a coalescent tree. To avoid repeated computation,
matrix decomposition is done for each ranked tree topology
with population labels. In this simulation study, there are
seven possible ranked tree topology with population labels
when two gene copies were sampled from each population.
Then we need to do matrix decomposition for these trees no

matter how many loci are analyzed and how many trees are
sampled from an MCMC simulation. In our analyses, the
computing time of matrix decomposition was constant as
0.02 s for the case of four sequences. Given the result of matrix
decomposition, the CPU time of computing the posterior
probability is proportional to the number of loci in a serial
computation (fig. 4b). In parallel computing, the computing
time of both steps is substantially reduced (see supplemen
tary table S2, Supplementary Material online) and this
method is appropriate to analyze many loci.
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FIG. 4. The average CPU time for a single CPU (serial computation) in Step 1 and Step 2 of the new method as a function of the number of loci with
four gene copies. (a) The mean CPU time for one iteration of MCMC simulation (Step 1), including proposal and evaluation of an update for each
locus. Both axes are on a log scale. (b) The mean CPU time for completing the posterior probability calculation (Step 2) for a single set of
demographic parameter values, given sampled coalescent trees from multiple loci. Both axes are on a log scale.
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FIG. 3. Simulation results illustrating the performance of the new method for a 2-population IM model. The true IM model has parameters TS¼ 2,
m1 ¼ 0:02; m2 ¼ 0:1; h1 ¼ 5; h2 ¼ 1 and ha ¼ 3. DNA sequences were simulated over a range of loci numbers. For each plot, the x axis for
numbers of loci is on a log scale. The difference between the true value and the mean of the estimated values are plotted (gray horizontal line at 0),
and vertical dashed lines indicate standard errors. The average of MAP estimations from 20 replicates, each with 1,000 coalescent trees per locus
sampled in step 1, are compared with the true parameters. (a) The average difference between MAP estimates and the true splitting time. (b) The
average differences for migration parameters. (c) The average differences for the population size parameters for sampled and ancestral
populations.
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Evaluation of Importance Samplers
In order to assess the effect of MCMC sample size (i.e., the
number of sampled coalescent trees per locus), we returned
to the simulated data used for the analysis in figure 3 and
generated 10 and 100 coalescent trees per locus after 100,000
burn-in iterations and 100 thinning iterations through
MCMC simulations separately. Demographic parameters
were estimated from sets of coalescent trees with different
sizes to evaluate the performance of the new method as a
function of sample size. As expected, larger samples and more
loci lead to better estimates, however the accuracy of the
estimates were fairly insensitive to the number of sampled
coalescent trees, with estimates based on 10 trees per locus
being nearly as good as those for samples of 100 or more (fig.
5; supplementary fig. S3, Supplementary Material online). The
reason for this good performance with small MCMC sample
size is that n‘ joint samples were used to approximate the
posterior density of W from n coalescent trees sampled from
each of ‘ loci (eq. 7). Thus, the number of joint samples
increases exponentially with the number of loci and increases
polynomially with the order of the number of loci as the
MCMC sample size per locus increases. Therefore, the new
method using importance sampling requires a much smaller
size of MCMC samples than standard MCMC samplers.

We also compared the performance when using the im-
portance sampling distribution assuming an improper prior,
q1ðkÞ, with the performance when using a single population

model for the importance sampling distribution, q2ðkÞ. We
analyzed the same simulated data sets that resulted in figure 3,
but using importance sampling distribution q2ðkÞ with an
upper bound of 20 for the single population size. As before,
we sampled 1,000 coalescent trees per locus following 100,000
burn-in iterations. The accuracy of the estimates made using
q2ðkÞ (see supplementary fig. S4, Supplementary Material
online) are very similar to those found using the improper
prior (fig. 3). However, the efficiency of the importance sam-
pling distribution q2 depends on the upper bound for the
single population size (see supplementary fig. S5,
Supplementary Material online). For example, when a small
upper bound is assumed, trees with short branches would be
mostly sampled (see supplementary fig. S6, Supplementary
Material online). In this case, a much larger MCMC sample
size is required to achieve the same performance with that
using the improper prior.

Demographic Model Inference with and without
Ghost Population
Once a sample of coalescent trees has been obtained, it can
be used for analyses under multiple different demographic
models, without having to resort to additional MCMC simu-
lations. As an example, we analyzed simulated data sampled
from a single population under both a single population
model and a two-population IM model. For the simulation
we generated 20 data sets, each with 50 loci and four gene
copies from a single population which shares migrants with
another unsampled population, a so-called “ghost” popula-
tion. Thus both the sampled and unsampled populations
occur in an IM model (fig. 1a) with parameters, h1 ¼ 1 (sam-
pled population), h2 ¼ 5 (ghost), ha ¼ 3; m1 ¼ 2; m2

¼ 0:4 and TS¼ 4. In step 1, 10,000 coalescent trees for
each locus were sampled after 100,000 burn-in iterations
and 100 thinning iterations from MCMC simulation. In step
2, the same set of coalescent trees was used repeatedly to
infer two evolutionary scenarios: (1) a single population that
has not shared migrants with other populations; and (2) an
IM model in figure 1a where the population of size h2 was
considered as “ghost”.

Under the single population model, the population size
estimate of 4.15 was much larger than the true size of 1 (fig. 6).
When an IM model was inferred, the estimated sampled
population size was 1.338, much closer to the true value,
and overall the estimates of the IM model parameters were
accurate (fig. 6). Since we did not sample the ghost popula-
tion, the standard error for the ghost population size was
large, but the confidence interval contains the true value.
For model comparison, we used Akaike’s information crite-
rion (AIC), and in 18 out of 20 replicates the IM model was
selected rather than a single population model (see supple
mentary table S3, Supplementary Material online).

False Positives of Likelihood Ratio Tests
The new method maximizes the joint posterior distribution,
which is proportional to the joint likelihood when the prior
distribution on demographic parameters is constant. Thus
when working with uniform priors, and given a single sample
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FIG. 5. The performance of the new method as a function of MCMC
sample size. The true IM model has parameters TS¼ 2,
m1 ¼ 0:02; m2 ¼ 0:1; h1 ¼ 5; h2 ¼ 1, and ha ¼ 3. The difference
between the true splitting time and the mean of the estimated values
are plotted (gray horizontal line at 0), and vertical lines indicate stan-
dard errors. DNA sequences were simulated for 10 loci (� and real
line) and 100 loci (� and dashed line). The x axis for MCMC sample
size is on a log scale. The estimates of other parameters are shown on
supplementary figure S3, Supplementary Material online.
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of coalescent trees in step 1, the method can compare the
maximum joint likelihoods, L0 and L1, under null (nested) and
alternative (full) models, respectively (see also Nielsen and
Wakeley 2001; Hey and Nielsen 2007).

Recently, a widely used method (implemented in IMa2) for
LRTs for nested IM model comparisons (Hey and Nielsen 2007)
was shown to exhibit high false positive rates when actual di-
vergence is low and the amount of data is not large
(Cruickshank and Hahn 2014). The cause of the high false pos-
itive rate was later shown to be largely due to the LRT being
basedon amarginal densitythat was not joint with thesplitting
time parameter and population sizes in the IM model. Hey et al.
(2015) were able to generate a fully joint surface for a reduced
model of three parameters, and showed that the observed
distribution of the LRT test statistic followed the asymptotic
distribution much more closely, and that the high false positive
rate was much closer to target rate. Thus, because our new
method estimates a joint posterior density in all demographic
parameters, we were particularly interested in its LRT perfor-
mance under the small data, low divergence context that ex-
hibited high false positive rates for Cruickshank and Hahn
(2014). We simulated 2, 10, 100, and 1,000 loci of two gene
copies from each of two populations under recently diverged
isolation models with h1 ¼ h2 ¼ ha ¼ 5 and TS ¼ 0:5 or
10�6. We considered two low values for TS, including a value
of effectively zero, TS ¼ 10�6, and a value of TS ¼ 0:5 which
wasusedbyCruickshankandHahn(2014) andHeyetal. (2015).
For each case we simulated 100 replicates. In step 1, 1,000 co-
alescenttreesforeachlocusweresampledafter100,000burn-in
and 100 thinning iterations. In step 2, the joint likelihoods are
maximized under an isolation model (no migration) with same
population sizes (null model) and an IM model with same
population sizes and same migration rates (alternative model)
using the same set of trees. We computed the LRT statistic�
2ðlog L0 � log L1Þ for each case. The difference in the number
of parameters between two models is 1.

Typically, when comparing two models that differ by
one parameter the appropriate asymptotic distribution of
LRT statistic is the v2-distribution with 1 degree of

freedom. However for the present case of the true param-
eter value equal to zero and on the boundary of the pa-
rameter space, the asymptotic distribution is a mixture
distribution of zero with probability 0.5 and v2

1 with prob-
ability 0.5 (Chernoff 1954; Self and Liang 1987). That is, we
expect a half of LRTs to be zero when m1 ¼ m2 ¼ 0.
Therefore, we examined the proportion of zero LRTs
and the false positive rates using two critical values,
2.705 and 3.841, from the mixture and original v2

1 distri-
butions with significance level 5%.

Table 2 shows the false positive rates and the proportion
of zero values of LRTs. When the true splitting time is near
zero, TS ¼ 10�6 the results show a false positive rate close to
the expected rate. On 1,000-locus data sets, the LRT statistic
seems to follow the mixture distribution (see supplementary
fig. S10, Supplementary Material online): the false positive
rate is 2% and 52% of data sets have zero LRTs. In this case,
the original test with v2

1 distribution shows conservative
results. Although the false positive rate on 100-locus case
is elevated, those on smaller data sets are 5% or less. The
proportions of zero LRTs on 100-locus or smaller data sets
are 12–34%, lower than the expected proportion of 50%.
When the true model has a splitting time of TS ¼ 0:5, the
MAPs of the parameters under isolation model and IM
model, respectively, come closer to the true values with
more loci (see supplementary table S5, Supplementary
Material online). However, we observed some elevation of

Table 2. False Positive Rates under Very Low Divergence.

No. loci 2 10 100 1,000

False positive rate (mixture) 0.01 0.05 0.11 0.02
False positive rate (v2

1) 0.01 0.02 0.05 0.01
Proportion of zero LRTs 0.25 0.12 0.34 0.52

NOTE.—False positive rates of LRTs for migration rate are computed when the
mixture distribution or an original v2

1 are considered as a null distribution. The
proportions of zero values of LRTs are computed as well. The true simulation model
is the 2-population isolation models with h1 ¼ h2 ¼ ha ¼ 5 and TS ¼ 10�6, re-
spectively. The number of loci varies from 2 to 1,000, and two gene copies are
simulated from each population.

FIG. 6. Estimation of demographic model with and without ghost population. The true simulation model is a 2-population IM model
(h1 ¼ 1; h2 ¼ 5; ha ¼ 3; m1 ¼ 2; m2 ¼ 0:4, TS¼ 4) and we simulated DNA sequences from the population of size h1. That is, the other
population of size h2 is a “ghost” population. Two demographic models were estimated: a single population model (� and IM model with ghost
population (� Symbols represent the average difference over 20 replicates between MAPs and the true value. Bars represent the standard errors of
parameter estimations.
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false positives (table 3), though much smaller than when TS

is not in the joint distribution (Cruickshank and Hahn 2014),
with LRT values seeming to depart from the mixture distri-
bution which is the limiting distribution of LRT when the
number of loci goes to the infinity (see supplementary fig.
S10, Supplementary Material online). The false positive rates
on 2-locus and 100-locus cases are smaller than 5% but
larger than 5% on 10-locus and 1000-locus cases. The pro-
portions of zero LRTs range from 28% to 34%. When the null
hypothesis is rejected, migration rate and splitting time are
always overestimated and the population size is underesti-
mated (see supplementary fig. S9, Supplementary Material
online). This pattern indicates that the divergence of se-
quences under IM models with such large splitting time
and migration rate is similar to that of the simulation model
of zero migration rate and small splitting time.

Evolutionary History of Western and Central
Common Chimpanzees
We applied the new method to the demographic history of
two common chimpanzee subspecies, Pan troglodytes (P. t.)
troglodytes from Central Africa and P. t. verus from West Africa.
These subspecies have been studied previously using IM mod-
els with small numbers of loci (Won and Hey 2005; Hey 2010a;
Becquet and Przeworski 2007). These and other studies
(Wegmann and Excoffier 2010; Caswell et al. 2008) reported
finding a signal of gene exchange between the subspecies with
a divergence times of several hundred thousand years.

We aligned three sequences from each of two subspecies
from the great ape genome project (Prado-Martinez et al.
2013) by using the human genome reference (version 18).
We partitioned the whole genome into nonoverlapping seg-
ments of size 10,000 bps and selected 1,000 segments at ran-
dom. In order to minimize a potential influence from
recombination within a locus, each segment was separated
into haplotype blocks using the four-gamete criterion
(Hudson and Kaplan 1985) and one block was selected at
random from each segment. The average length of 1,000 loci
was 4,206 base pairs. In step 1 of the analysis, an improper
prior was assumed and 3,000 coalescent trees, scaled by per-
site mutation rate, were sampled every 100 iterations after a
burn-in of 100,000 iterations for each locus. Several MCMC
diagnostics was carried out to ensure convergence (see supple
mentary Note and Supplementary figs. S7 and S8,
Supplementary Material online). In step 2, we estimated three
population sizes of each of P. t. troglodytes and P. t. verus and
their common ancestor, two migration rates and divergence
time of them. The upper bounds for population sizes, diver-
gence time and migration rates were 0.1, 0.01, and 1000, re-
spectively. We used 48 CPUs for the step 1 analysis and it took
around 3 h. The step 2 analysis took around 17 h on 196 CPUs.

The estimated demographic parameter values by MIST
were ĥ1 ¼ 0:00217 (P. t. troglodytes), ĥ2 ¼ 0:00051 (P. t.
verus), ĥa ¼ 0:00086; T̂S ¼ 0:00035; m̂1 ¼ 810:434, and
m̂2¼2.573e-10. Using a per-site mutation rate per generation
of 2� 10�8 and assuming 20 years per generation, we con-
verted the estimates on a demographic scale. Table 4 shows
the converted estimates obtained with MIST using 1,000 loci
together with estimates from previous studies that used an
IM model. These include Won and Hey (2005) and Hey
(2010a) who used a 6-parameter IM model with 48 and 73
loci, respectively, and Becquet and Przeworski (2007) who
analyzed 68 loci using a 5-parameter IM model with a single
symmetric migration rate. All of these studies are broadly
consistent with each other and suggest a model in which P.
t. troglodytes is estimated to be about four times larger than
that h2 of P.t. verus, with gene flow occurring since their sep-
aration several hundred thousand years ago. Our new

Table 3. False Positive Rates under Intermediate Divergence.

No. loci 2 10 100 1,000

False positive rate (mixture) 0.03 0.14 0.03 0.13
False positive rate (v2

1) 0.01 0.06 0.03 0.10
Proportion of zero LRTs 0.34 0.29 0.33 0.28

NOTE.—False positive rates of LRTs for migration rate are computed when the
mixture distribution or an original v2

1 are considered as a null distribution. The
proportions of zero values of LRTs are computed as well. The true simulation model
is the 2-population isolation model with h1 ¼ h2 ¼ ha ¼ 5 and TS ¼ 0:5. The
number of loci varies from 2 to 1,000, and two gene copies are simulated from
each population.

Table 4. Estimation of Demography for Two Chimpanzee Subspecies.

Methods MIST Won & Hey (2005)a Hey (2010a)b Becquet et al. (2007)c

No. loci 1,000 50 73 68

P. t. troglodytes (Ptt) Ne 27,081.38 27,900 27,832.67 33,000
P. t. verus (Ptv) Ne 6,342.3 7,600 7191.48 9,750
Common ancestor Ne 10,808.71 5,300 8,399.21 15,000
Splitting time (years) 347,732 422,000 410,000 439,000
Migration rate per generation

from Ptt to Ptv 1.621e-5 9.2115e-6 9.108e-6 –
from Ptv to Ptt 5.147e-18 1.1842e-7 7.0496e-6 –

NOTE.—Maximum a posteriori estimates of demography for P. t. troglodytes and P. t. verus from 3,000 loci of six sequences are compared with the estimates of previous studies.
Model parameter estimates are shown on a demographic scale, using a per-site mutation rate per generation of 2� 10�8 and assuming 20 years per generation. Migration rates
are backward in time.
a–bIMa2(Hey and Nielsen 2007) was applied
aGeometric mean of mutation rate per locus per generation of 7.808e-6 and 15 years per generation were assumed
bGeometric mean of mutation rate per locus of 9.108e-6 and 20 years per generation were used.
cMIMAR (Becquet and Przeworski 2007) was applied. The per-site mutation rate per generation of 2� 10�8 and 20 years per generation assumed.
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estimate of the migration rate m1 from P. t. verus to P. t.
troglodytes (forward in time) is larger than previously reported
(2N1m1 ¼ 0:878), but our estimate of m2 for the opposite
direction is very close to zero (2N2m2 ¼ 3:113e� 13), which
is consistent with Won and Hey (2005). In contrast Hey
(2010a) reported a significant migration rate m2 under a 2-
population IM model and Becquet and Przeworski (2007)
reported a bidirectional rate of 2N2m ¼ 0:1575 where
m ¼ m1 ¼ m2. Overall the estimated model under the
new method is consistent with results from previous studies.
It is useful to note that all of these previous studies generated
estimates from the marginal posterior distributions, whereas
our analysis using MIST provides an estimate based on the full
joint posterior density.

Discussion
MCMC-based Isolation-with-Migration analyses have come
to play a critical role in the analysis of population structure
and of recent speciation events (Gronau et al. 2011; Pinho and
Hey 2010; Schraiber and Akey 2015; Payseur and Rieseberg
2016; Hey and Pinho 2012). The innovations presented here
will enable the inclusion of larger portions of the genome, and
provide a path for studying a wider range of demographic and
phylogenetic models.

A major roadblock for existing MCMC based approaches
that allow for extensive gene flow and population splitting is
the non-independence of loci in demographic models with
multiple time epochs. It is the updating of these epochs (e.g.,
splitting time Ts) that must be done jointly for all loci, and
that causes low acceptance rates in the Markov chain simu-
lation when there are large numbers of loci (Wang and Hey
2010). By using importance sampling of coalescent trees and
removing the underlying demographic model from the
MCMC phase of the study, the MCMC update and sampling
processes in the new method can treat loci independently.

Another major hurdle for MCMC-based methods that in-
clude migration over wide time periods are the complexities
and time required to appropriately update genealogies that
include migration paths. Our new approach includes an exact
accounting of all possible migration path histories in the sec-
ond phase of the analysis, allowing for the removal of migra-
tion paths from the MCMC phase and allowing for the
importance sampling approach that does not rely upon an
underlying demographic model.

With a simpler Markov chain simulation that treats loci in-
dependently, we have no need for the use of metropolis-
coupling (Geyer 1991) or parallel tempering methods
(Swendsen and Wang 1986) that rely upon running multiple
heated chains. In our experience a single Markov chain simula-
tion for as many as 10,000 loci proceeds smoothly without mix-
ing difficulty.

The emphasis on problems with large numbers of loci and
small numbers of gene copies per locus is appropriate for
many demographic problems, for which the optimal sam-
pling effort favors more loci over more gene copies per locus
(Felsenstein 2006; Hey 2010b; Cruickshank and Hahn 2014;
Hey et al. 2015). The new method is designed to scale well

with the number of loci, but limited to low numbers of gene
copies per locus because the computing times and required
memory size grows exponentially with the number of gene
copies per locus (see supplementary table S4, Supplementary
Material online). In the calculation of the posterior probability
in the second step of the analyses, MIST implemented the
new method employs transition rate matrices that are con-
structed for the unique ranked tree topologies with popula-
tion labels among the sampled coalescent trees. The number
of ranked tree topologies exponentially increases with the
number of gene copies (Semple and Steel 2003) and the sizes
of transition rate matrices for each ranked tree topology are
exponentially growing with the number of gene copies as well
(Andersen et al. 2014). For example, there are 7,248 unique
ranked tree topologies on eight gene copies, whereas seven
unique ranked tree topologies on four gene copies. The CPU
times and physical memory usages in step two rapidly in-
creased from 4 to 8 gene copies (see supplementary table
S4, Supplementary Material online).

The new method is also unique in efficiently providing the
joint MAP estimate of any given demographic model and for
allowing model comparisons based on joint MAP estimates
obtained under different models. In the case of Bayesian
methods that sample demographic parameter values from
an MCMC simulation, it has generally not been feasible to
estimate a posterior density in many dimensions, and most
analyses are limited to estimates of a marginal posterior den-
sity for each parameter using histograms built from the sam-
pled parameter values. For example, LRTs of migration rates
using IMa2 exhibit high false positive rates in cases of low
divergence and small sample sizes (Cruickshank and Hahn
2014), and this has been shown to largely be a consequence
of using marginal distributions (Hey et al. 2015).

By sampling only coalescent trees, the new method does
not rely upon histograms of sampled parameter values, but
instead generates a function equation (6) that is an estimate of
the joint distribution over all demographic parameters. LRTs of
migration rates using the new method show false positive rates
close to those expected of the limiting case for the null distri-
bution of the LRT statistic, even for very low divergence.

Supplementary Material
Supplementary data are available at Molecular Biology and
Evolution online.

Acknowledgments
We thank Vitor Sousa for helpful discussion on an early ver-
sion of the new method and Arun Sethuraman for writing a
part of codes of MIST. This research was supported under
NIH grant R01GM078204 to J.H.

References
Andersen LN, Mailund T, Hobolth A. 2014. Efficient computation in the

im model. J Math Biol. 68(6): 1423–1451.
Asmussen S. (2003). Applied probability and queues. New York, NY:

Springer-Verlag.
Bahlo M, Griffiths RC. 2000. Inference from gene trees in a subdivided

population. Theor Popul Biol. 57(2):79–95.

Bayesian Analysis of Evolutionary Divergence . doi:10.1093/molbev/msx070 MBE

1527Downloaded from https://academic.oup.com/mbe/article-abstract/34/6/1517/3053364/Bayesian-Analysis-of-Evolutionary-Divergence-with
by Temple University user
on 31 August 2017

Deleted Text: Isolation 
Deleted Text: with 
Deleted Text: -
http://mbe.oxfordjournals.org/lookup/suppl/doi:10.1093/molbev/msx070/-/DC1
http://mbe.oxfordjournals.org/lookup/suppl/doi:10.1093/molbev/msx070/-/DC1
http://mbe.oxfordjournals.org/lookup/suppl/doi:10.1093/molbev/msx070/-/DC1
Deleted Text: 8 
Deleted Text: while 
Deleted Text: 7 
Deleted Text: 4 
Deleted Text: 2 
http://mbe.oxfordjournals.org/lookup/suppl/doi:10.1093/molbev/msx070/-/DC1
http://mbe.oxfordjournals.org/lookup/suppl/doi:10.1093/molbev/msx070/-/DC1
http://mbe.oxfordjournals.org/lookup/suppl/doi:10.1093/molbev/msx070/-/DC1
http://mbe.oxfordjournals.org/lookup/suppl/doi:10.1093/molbev/msx070/-/DC1


Becquet C, Przeworski M. 2007. A new approach to estimate parameters
of speciation models with application to apes. Genome Res.
17(10):1505–1519.

Beerli P, Felsenstein J. 1999. Maximum-likelihood estimation of migration
rates and effective population numbers in two populations using a
coalescent approach. Genetics 152(2):763–773.

Berner D, Grandchamp AC, Hendry AP. 2009. Variable progress toward
ecological speciation in parapatry: stickleback across eight lake-
stream transitions. Evolution 63(7):1740–1753.

Caswell JL, Mallick S, Richter DJ, Neubauer J, Schirmer C, Gnerre S, Reich
D. 2008. Analysis of chimpanzee history based on genome sequence
alignments. PLoS Genet. 4(4):e1000057.

Chernoff H. 1954. On the distribution of the likelihood ratio. Ann Math
Statist. 25(3):573–578.

Cong Q, Borek D, Otwinowski Z, Grishin NV. 2015. Tiger swallowtail
genome reveals mechanisms for speciation and caterpillar chemical
defense. Cell Rep. 10(6):910–919.

Cruickshank TE, Hahn MW. 2014. Reanalysis suggests that genomic is-
lands of speciation are due to reduced diversity, not reduced gene
flow. Mol Ecol. 23(13):3133–3157.

Felsenstein J. 1988. Phylogenies from molecular sequences: inference and
reliability. Annu Rev Genet. 22(1):521–565.

Felsenstein J. 2006. Accuracy of coalescent likelihood estimates: do we
need more sites, more sequences, or more loci?. Mol Biol Evol.
23(3):691–700.

Geraldes A, Basset P, Gibson B, Smith KL, Harr B, Yu HT, Bulatova N, Ziv
Y, Nachman MW. 2008. Inferring the history of speciation in house
mice from autosomal, x-linked, y-linked and mitochondrial genes.
Mol Ecol. 17(24):5349–5363.

Geyer CJ. (1991). Markov chain Monte Carlo maximum likelihood.
Computing Science and Statistics. Proceedings of the 23rd
Symposium on the Interface, p. 156–163.

Griffiths RC. 1989. Genealogical-tree probabilities in the infinitely-many-
site model. J Math Biol. 27(6):667–680.
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Bernhöft S, Thiberge JM, Phuanukoonnon S, et al. 2009. The peopling
of the pacific from a bacterial perspective. Science
323(5913):527–530.

Nielsen R. 2000. Estimation of population parameters and recombina-
tion rates from single nucleotide polymorphisms. Genetics
154(2):931–942.

Nielsen R, Wakeley J. 2001. Distinguishing migration from isolation: a
Markov chain Monte Carlo approach. Genetics 158(2):885–896.

Payseur BA, Rieseberg LH. 2016. A genomic perspective on hybridization
and speciation. Mol Ecol. 25(11):2337–2360.

Pinho C, Hey J. 2010. Divergence with gene flow: models and data. Annu
Rev Ecol Evol Syst. 41(1):215–230.

Prado-Martinez J, Sudmant PH, Kidd JM, Li H, Kelley JL, Lorente-Galdos B,
Veeramah KR, Woerner AE, O’Connor TD, Santpere G, et al. 2013.
Great ape genetic diversity and population history. Nature
499:471–475.

Price K, Storn R, Lampinen J. (2005). Differential evolution: a practical
approach to global optimization. New York: Springer.

Robert CP, Casella G. (2013). Monte Carlo statistical methods. New York:
Springer Science & Business Media.

Schraiber JG, Akey JM. 2015. Methods and models for unravelling human
evolutionary history. Nat Rev Genet. 16(12):727–740.

Self SG, Liang KY. 1987. Asymptotic properties of maximum likelihood
estimators and likelihood ratio tests under nonstandard conditions.
J Am Stat Assoc. 82(398):605–610.

Semple C, Steel M. (2003). Phylogenetics. New York, NY: Oxford
University Press.

Swendsen RH, Wang JS. 1986. Replica Monte Carlo simulation of spin-
glasses. Phys Rev Lett. 57(21):2607.

Wang Y, Hey J. 2010. Estimating divergence parameters with small sam-
ples from a large number of loci. Genetics 184(2):363–379.

Wegmann D, Excoffier L. 2010. Bayesian inference of the demographic
history of chimpanzees. Mol Biol Evol. 27(6):1425–1435.

Wilson IJ, Balding DJ. 1998. Genealogical inference from microsatellite
data. Genetics 150(1):499–510.

Won YJ, Hey J. 2005. Divergence population genetics of chimpanzees.
Mol Biol Evol. 22(2):297–307.

Zhu T, Yang Z. 2012. Maximum likelihood implementation of an
isolation-with-migration model with three species for testing speci-
ation with gene flow. Mol Biol Evol. 29(10):3131–3142.

Chung and Hey . doi:10.1093/molbev/msx070 MBE

1528Downloaded from https://academic.oup.com/mbe/article-abstract/34/6/1517/3053364/Bayesian-Analysis-of-Evolutionary-Divergence-with
by Temple University user
on 31 August 2017


	msx070-TF1
	msx070-TF2
	msx070-TF3
	msx070-TF4
	msx070-TF5
	msx070-TF6
	msx070-TF7
	msx070-TF8

