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The population genetic study of divergence is often

carried out using a Bayesian genealogy sampler, like

those implemented in IMA2 and related programs, and

these analyses frequently include a likelihood ratio test

of the null hypothesis of no migration between popula-

tions. Cruickshank and Hahn (2014, Molecular Ecology,

23, 3133–3157) recently reported a high rate of false-pos-

itive test results with IMA2 for data simulated with

small numbers of loci under models with no migration

and recent splitting times. We confirm these findings

and discover that they are caused by a failure of the

assumptions underlying likelihood ratio tests that arises

when using marginal likelihoods for a subset of model

parameters. We also show that for small data sets, with

little divergence between samples from two popula-

tions, an excellent fit can often be found by a model

with a low migration rate and recent splitting time and

a model with a high migration rate and a deep split-

ting time.
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Introduction

Isolation-with-migration (IM) models are widely used in

the genetic study of divergence precisely because they

incorporate the two main demographic factors thought to

contribute to divergence. These are the separation of popu-

lations at some time (larger times are associated with more

divergence) and gene migration (higher rates are associated

with less divergence). Investigators are also often interested

in testing the null hypothesis that the migration rate

between diverged populations is zero. A statistical conclu-

sion of a nonzero migration rate can be of considerable

interest as it may be taken as indirect evidence that natural

selection is contributing to the divergence process (Pinho &

Hey 2010).

Recently, Cruickshank & Hahn (2014), hereafter C&H, in

a paper on the pitfalls of interpreting the causes of varia-

tion in a genome scan, reported that the widely used IMA2

program (Hey 2010) returned high false-positive rates for

tests of gene flow under some circumstances.

IMA2 is descended from a method developed by Nielsen

& Wakeley (2001) for estimating the parameters of an IM

model using the Markov chain Monte Carlo (MCMC)

approach of Wilson & Balding (1998) in which both

genealogies and demographic model parameters are

included in the state space of the simulation. Although the

method is Bayesian, in the special case of a uniform prior

distribution the posterior probabilities of model parameters

are proportional to the likelihood, and the original method

and subsequent related methods have made use of this for

the purpose of likelihood ratio tests. Specifically, Nielsen &

Wakeley (2001) proposed a log likelihood ratio (LLR) test

of the null hypothesis that the migration rate is equal to

zero, and this test is included in IMA2 and was used by

C&H. The performance of the IMA2 program (and its prede-

cessors) has been examined and been found to provide

generally accurate estimates, particularly when the under-

lying assumptions of the method apply (Hey & Nielsen

2004, 2007; Becquet & Przeworski 2009; Hey 2010; Stras-

burg & Rieseberg 2010; Naduvilezhath et al. 2011); how-

ever, performance had not been well examined for models

that lead to low divergence.

C&H simulated data sets with no migration and with

varying numbers of loci and varying times of population

isolation, and found that the rate of rejection of a zero

migration rate was substantially higher than the expected

frequency of false positives (i.e. 0.05) for data sets with

small numbers of loci (≤10) and recent divergence times

(<Ne generations, where Ne is the effective population size

of each of the populations). Using the protocol described

by C&H for simulating data sets, as well as details on the

prior distributions which were provided upon request, we

observed the same high false-positive rates. Importantly,

under the parameters ranges studied by C&H, we

observed high false-positive rates using both the original

test of Nielsen & Wakeley (2001), and the tests proposed

by Hey & Nielsen (2007) that are based on the joint distri-

bution of population size and migration rate parameters.

In this study, we reproduce by simulation the false-

positive results reported by C&H, and we take a detailed

look to uncover some of the likely causes. We also explore

more generally the difficulty in working with small data

sets that show low divergence.Correspondence: Jody Hey, Fax: 215 204 6646;

E-mail: hey@temple.edu
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Methods

Working with a simplified model

Typically an IM model has six parameters, including popu-

lation mutation rates for two sampled populations and

their ancestor (h1, h2 and hA), migration rates in each direc-

tion (m1?2 and m2?1) and a splitting time t. To simplify

the analysis and presentation, we focus here on a reduced

IM model in which all three populations (both descendant

populations and the ancestral population) have the same

population size, and in which the migration rates in both

directions are equal. This model has just three parameters:

a population size, h, a migration rate, m, and a splitting

time, t.

Under the method of Nielsen & Wakeley (2001), it is

possible to approximate a distribution that is proportional

to the likelihood for a data set X for any particular model

parameter by constructing a histogram of values of that

parameter that are sampled from an MCMC simulation. In

the case of m, Nielsen and Wakeley proposed that the esti-

mate of the likelihood, p(X|m), be used to conduct a likeli-

hood ratio test of the null hypothesis that the migration

rate is zero. For this type of test, with a parameter fixed at

a boundary value, the test statistic, Λ = �2log(Lmax(X|

m = 0)/Lmax(X|m)), has an asymptotic distribution that

takes a value of 0 with probability 0.5 and a value from

the chi-square distribution with probability 0.5 (Chernoff

1954).

With the development of IMA and IMA2, it became possi-

ble to conduct likelihood ratio tests on joint distributions

for population size and migration parameters (h and m),

with a likelihood ratio test value of Λ = �2log(Lmax(X|h,
m = 0)/Lmax(X|h, m)). However these tests, like those

under the original method of Nielsen and Wakeley, use

densities that are not full joint distributions, but rather use

marginal densities found by integrating out t. All of these

tests, including those using IMA and IMA2 and the original

tests of Nielsen & Wakeley (2001) as implemented in the

IM program (Hey & Nielsen 2004), exhibit high false-posi-

tive rates for migration with small data sets when the true

model has a small value for t.

To see how the use of marginal densities may contribute

to the high false-positive rates, we used the original IM

program to generate full joint density estimates (i.e.

three-dimensional histograms) in order to approximate a

test value that does not require integration over any model

parameters, that is Λ = �2log(Lmax(X|t, h, m = 0)/Lmax(X|t,

h, m)).

Simulations

One hundred data sets were simulated using the ms pro-

gram (Hudson 2002), each with two loci, and with parame-

ter values: h = 4Nu = 5, m = 0, t = 0.5 (following the

parameterization as outlined in Hey & Nielsen (2004)).

These values were suggested by T. Cruickshank (pers.

comm.) and are representative of the circumstances that

cause a high false-positive rate. Each data set was analysed

using the IM program under a three-parameter model. A

large sample of parameter values were collected so as to

well populate a histogram in three dimensions with 200

bins on each axis. These runs were carried out with an

upper bound of 10 for each of the three parameters, and

fifty Metropolis-coupled chains were used to help ensure

good mixing of the Markov chain simulation. Additional

simulations were carried out using ms for estimating the

allele frequency spectrum (AFS) and for estimating the dis-

tribution of Φst, an Fst analogue for DNA sequence data

(Excoffier et al. 1992). For Φst calculations, the sequences

for each individual gene copy were concatenated across

loci to form a single sequence for each.

Results and discussion

The circumstances under which high false-positive rates

for tests of migration occur are those in which: (i) the data

set, in terms of numbers of loci and numbers of gene

copies per locus, is small; and (ii) the true demographic

model is one that generates very little signal of divergence

in the data (Cruickshank & Hahn 2014). These circum-

stances, denoted here as Small Data, Low Divergence

(SDLD), present several challenges for isolation with

migration analyses.

Estimator bias

The means of the parameter estimates from 100 simulated

data sets were h ¼ 4:19;m ¼ 6:3 and t ¼ 1:1; which can be

compared to the true values: h = 5, m = 0 and t = 0.5. The

ranges of values for the MLEs for each of the parameters

are shown in Fig. 1. The distributions of estimates for each

parameter showed a wide variance; however, in the case of

m, the estimator appears to be strongly biased. Only 14 of

the 100 data sets returned an estimated value in the lowest

bin of the histogram (corresponding to m ¼ 0:025), and the

large majority of the estimates were far from the true

value.

False-positive tests resulting from marginal densities

Figure 2 shows the cumulative distribution of likelihood

ratio statistic Λ for 100 data sets for the full joint density,

as well as for the marginal densities when t and h, or both,
are integrated out. Also shown is the expected asymptotic

distribution for the test statistic. Under this distribution,

the 95% cut-off value (i.e. the value above which the cumu-

lative probability is 0.05) is 2.71.

For both the 1- and 2-dimensional marginal densities,

the distribution for Λ shows much less skew, and is shifted

far to the right, relative to the expected distribution. Partic-

ularly when t is integrated out, the large majority of simu-

lations result in a test value that would reject the null

model of no migration. However, for the full joint distribu-

tion, the distribution is much closer to the expected distri-

bution, particularly in the upper tail, and the overall rate
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of rejection of the null model was 4 of 100, that is quite

close the expected number of 5 for the target false-positive

rate of 0.05.

To help envision the actual shape of these joint densities,

contour plots for three representative data sets are shown

in Fig. 3. Panel A shows a case when the test using the full

model {h, m, t} rejected the null hypothesis m = 0, and the

MLEs under the two models differed considerably. Panels

B and C show cases when the null model was not rejected.

For tests based on marginal distributions h;mf g; fm; tg and

{m}, all three data sets shown in Fig. 3 rejected the null

hypothesis of no migration.

In theory, the density of the likelihood ratio statistic will

approach the asymptotic distribution when the null model

is true and the data set consists of many independent and

identically distributed (IID) values (Wilks 1938). In the case

of a data set of multiple DNA sequences from a single

locus, the IID assumption is not met because the sequences

share an underlying genealogical history. However, data

sets from multiple unlinked loci are IID, and it has been

shown for some models with six loci that the distribution

of the likelihood ratio statistic does converge to the

expected chi-square distribution when using a marginal

density (Hey & Nielsen 2007). The fact that marginal likeli-

hood surfaces present distributions that are far from the

asymptotic distribution (Fig. 2) suggests that there are

strong nonlinear correlations in the joint surface (Fig. 3). In

addition, the act of integrating over one or more parame-

ters, to generate a marginal likelihood surface, will cause

the data from different unlinked loci to not make indepen-

dent contributions to the likelihood surface, in violation of

the IID assumption of likelihood ratio tests.

Very different models can give rise to data showing low

divergence

When the true migration rates are at or near zero and the

splitting time is recent, the actual divergence between the

samples from two populations is expected to be slight. To

visualize the patterns of divergence that arise under the

different kinds of models estimated in the SDLD context,

we calculated widely used summaries of variation and

divergence for a representative data set from among those

used to generated Figs 1–3, for which the true values were

h = 5, m = 0, t = 0.5. The selected data set exhibited a false-

positive likelihood ratio test for migration in marginal

models and had an estimated model far from the true

value: ĥ = 2.1, m̂ = 6.5, t̂ = 9.8. Figure 4A shows the

expected 2-dimensional AFS simulated under the true

parameter values, and Fig. 4B shows the expected AFS for

the estimated parameters. Figure 4C shows the difference

between the two AFSs, which are very slight except for the

frequency classes for a single sampled derived allele in one

of the populations.

We also estimated divergence using Φst (Excoffier et al.

1992) for data sets simulated under these two parameter

sets. Figure 4D shows the histograms for 1000 simulated

data sets of two loci and of 20 loci, each for 15 gene copies

(n = 15) per population, and for two loci with n = 50 per

population. In the case of two loci and n = 15, the most

common Φst value is zero for both parameter sets (low
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Fig. 2 The cumulative distribution of the likelihood ratio statis-

tic. Shown are the theoretical expectation for the case with one

model parameter fixed at a specific value (i.e. m = 0), and val-

ues estimated from histograms for 100 data sets under a three-

parameter model, as described in the text. Values of the cumu-

lative distribution of Λ are shown for the full joint likelihood

surface, and for marginal distributions where one or two

model parameters are integrated out. The critical value for

p = 0.05 is 2.71, and is shown as a vertical dotted line.

Fig. 1 Box plots of estimates of h, m and t for 100 simulated

data sets. In each panel, the boxed area includes the interquar-

tile range (IQR) from the first to the third quartiles, with the

black thick line showing the median value. Whiskers indicate

1.5 IQR away from either the lower or upper quantiles, with

outliers shown using circles. Dotted coloured lines show the

true values used for the simulations.
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migration and small divergence time, and high migration

and large divergence time), indicating that by chance data

sets of this size under these models often show no sign of

divergence by this measure. In fact for the particular data

set used to generate the estimated parameter values for

this figure, Φst = 0. For data sets of 20 loci, or for data sets

of two loci but with 50 gene copies per population, the dis-

tributions were very similar, with positive modal values

for Φst.

Challenges of model estimation with SDLD data

SDLD data present a number of challenges when trying to

estimate parameters and conduct likelihood ratio tests. The

primary difficulty is that because both migration and split-

ting time are low, the actual signal in the data used to dis-

cern m and t is expected to be small. Furthermore, because

the data set is small, the data can easily, by chance, show lit-

tle or no sign of divergence. A second set of challenges arise

because of the failures of the assumptions of likelihood ratio

tests, as shown in Figs 2 and 3. An additional difficulty, not

explored here but that deserves mention, is that the likeli-

hood surfaces that arise with these data can present chal-

lenges in finding the highest point in the surface. When a

data set is quite small, and the prior distribution is broad

and flat, the data does not dominate the prior and the state

space of the MCMC simulation is explored relatively uni-

formly. The effect of this under MCMC is that the simulation

must explore the entire state space relatively evenly, and

because the genealogies in the MCMC simulation change

slowly, the time needed to obtain a large sample of nearly

independent samples from the state space can be very great.

Thus, even though the data set is small, the combination of

low divergence and very wide priors creates a challenging

mixing problem for an MCMC-based genealogy sampler.

Investigators who do not realize this may inadvertently use

too short a burning-in period, or an insufficiently short sam-

pling run, and take a poor sample. And that sample may in
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Fig. 3 Contour plots of p(h, m, t|X) (pro-

portional to the likelihood) for three rep-

resentative data sets, with variation

along the axis for h shown as a series of

four panels, each of which shows densi-

ties over m and t for a given value of h.
The maximum-likelihood estimate (MLE)

under the null hypothesis (m = 0) is

marked as 3 and the MLE under the

alternative hypothesis is marked as ●.
(A) A case where the null hypothesis

was rejected (Λ = 5.27), and the MLEs

under the two models differ considerably

for all three parameters. (B) The MLE

under the alternative model has a high

estimate of the migration rate (m ¼ 5:75);

however, the null model is not rejected

(Λ = 0.25). (C) The MLEs are the same

for the two models (Λ = 0), and the null

model is not rejected.
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turn not be sufficient to approximate the true posterior

density, leading to false conclusions.

Recommendations

Investigators working with a small number of loci and data

that shows little divergence (e.g. estimates of Fst at or near

zero) can expect a high rate of false positives when con-

ducting likelihood ratio tests using marginal distributions.

Importantly, the SDLD context is also one in which even

accurate tests of migration are expected to have little

statistical power.

The ideal solution to the problem that arises with mar-

ginal distributions is to use the joint distribution for all

model parameters, including population sizes, migration

rates and splitting time. For this study, this was feasible

because we used a reduced three-parameter model; how-

ever, a full IM model with six parameters is much harder

to put to the test because of the need for much larger sam-

ples (i.e. as needed to fill a histogram in six dimensions).
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