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NEWS & COMMENT

Pity the evolutionary geneticists trying
to keep track of mitochondrial DNA

(mtDNA) inheritance. Sure there are rules
of thumb, but none has ever been so
sturdy or so widely applicable as
Mendel’s Laws are for eukaryote nuclear
genes. Plants exhibit the panoply of
mtDNA inheritance, with some showing
strictly sex-limited transmission (either
paternal or maternal) and a few showing
biparental inheritance1. For other anisoga-
mous organisms, the working model has
usually been one of strictly maternal
inheritance, although now that we have
well confirmed, striking exceptions in
mussels2,3, as well as occasional reports of
paternal leakage in other organisms4–6,
one might never feel too sure. The most
recent affront to simplicity is the claim
that a human’s mtDNA is sometimes a
mixture of conventional maternal mtDNA
that has recombined with mtDNA from
somewhere else7–9. The claims are discon-
certing because so many researchers
study human mtDNA, and do so while
relying upon the assumption that non-
maternal inheritance and recombination
do not occur.

The first reports suggesting re-
combination focused on the apparent
implausibility of mutation as the sole
cause of homoplasy7,8. Human mito-
chondria are famously homoplastic, par-
ticularly in the control region of the cir-
cularly mtDNA genome10–12. It has long 
been assumed that our inability to gener-
ate a single evolutionary gene tree,
which explains each polymorphism via a
single mutation, was a simple conse-
quence of many polymorphisms having
been caused by multiple mutations at
the same base position. Hagelberg et al.7
found a polymorphism that appeared to
have arisen more than once among
pacific islanders, but had never been re-
ported from humans in other geographic
regions. However, that observation 

was recently found to be in error and
must be discounted13. Eyre-Walker 
et al.8 avoided control region data, 
and focused instead on synonymous
polymorphisms (i.e. in protein-coding
regions but not affecting amino-acid
sequences) that were found around the
entire mtDNA circle. They inquired just
how much of the considerable homo-
plasy, found for these synonymous 
polymorphisms, could be accounted 
for by mutation models. Their conclu-
sion was arrived at through the backdoor
– in finding that mutation models were
insufficient to explain homoplasy, the
authors were left with some kind of
recombination as the only remaining
explanation.

Of course, this sort of backdoor con-
clusion is fine when all that comes in is
an otherwise reasonable notion. But,
recombination in human mitochondria is
not a reasonable notion – at least in so far
as it flies in the face of what other know-
ledge we have of mtDNA inheritance in
humans, and in so far as human evolu-
tionary geneticists have assiduously
assumed that it cannot happen. When I
first heard Eyre-Walker describe his and
colleagues’ findings, I was impressed by
the clear logic behind their assessment
of the mutational component of homo-
plasy, but I simply was not prepared to
accept a conclusion of recombination. I
figured that we are fairly ignorant of
mutation, and supposed that it might
vary over time and base positions in
ways that are too awkward for any analy-
sis with a small number of parameters. As
complicated as such a process might be,
it seemed to be at least as parsimonious
as an invocation of recombination. 

But however reasonable such compla-
cency, it does not easily weather a more
recent report by Awadalla, Eyre-Walker
and Maynard Smith9. Awadalla et al.
examined linkage disequilibrium (LD)

between pairs of polymorphic sites, as 
a function of the distance between poly-
morphic sites. Linkage disequilibrium
generally arises as a simple by-product of
mutation, linkage and genetic drift, and it
can be increased or decreased depending
on these and other evolutionary factors.
Of course it will decrease, on average, the
more recombination occurs between the
pairs of polymorphic sites upon which 
it is measured. This simple idea, that
recombination will generate a negative
correlation between LD and DNA dis-
tance, has been used several times to
assess the historical role of recombin-
ation, particularly in contexts where 
conventional assessments of recombin-
ation are difficult14–17. Unlike most tests of
recombination18,19 that are at risk of mis-
construing recurrent mutation as recom-
bination, a pattern of decreasing LD is not
expected to mislead in this way. To help
see this, consider the basic nonparamet-
ric protocol employed by Awadalla et al.
First, each of all the possible pairs of
informative polymorphisms (i.e. those in
which the rarer base occurs at least twice
in the sample of sequences) are sub-
jected to two calculations: one that gives
a measure of LD and another that simply
counts the number of base pairs in
between the two positions. Second, the
correlation is measured between these
paired variables. Third, the positions of
the same polymorphisms are randomly
scrambled along the sequence and the
correlation is reassessed for the random-
ized data. Finally, this scrambling is
repeated many times to generate a distri-
bution of correlation coefficients with
which to assess the significance of the
actual correlation. Given this design, it is
hard to see how the researchers could be
misled by mutation, no matter how recur-
rent or changing one might suppose
mutation to be. So long as different
mutations occur independently of one
another, it is hard to see how they could
generate a negative correlation between
polymorphism and distance.

Given that a significantly negative
correlation was found in several in-
dependent data sets, from humans and
chimpanzees9, it seems unlikely that the
reported correlations are a fluke or are
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caused by an erroneous data set. But, that
does not mean that a skeptic does not
have room to work. Rather, an investiga-
tor who suspects a mistaken conclusion
must find some other mechanism, besides
recombination, that could cause covari-
ation in polymorphism patterns as a func-
tion of the distance between them (spe-
cifically a negative covariation). Here are
two general possibilities. First, mutation
might indeed occur in nonindependent
ways. For example, mutations might
sometimes occur in pairs or multiples
and, when they do, they may be more
likely to occur near one another, rather
than further apart. There is a wealth of evi-
dence against models of this sort, going
back at least to the classic Luria–Delbruck
experiments20, but they do not rule out
occasional bursts of mutation in mtDNA.
Second is that data recording might in-
troduce nonindependent errors. For ex-
ample, suppose that those who did the DNA
sequencing tended to gather data in paral-
lel (i.e. all samples for one segment of the
mtDNA and then all samples for the next),
rather than in series (one complete and
then the second complete, etc.). Parallel
sequencing protocols are the rule, and it
is possible that when errors do occur they
are introduced in such a way as to cause
some covariation with distance. The prob-
lem with this notion is that the results 
of Awadalla et al. rely upon informative
polymorphisms, which turn up multiple
times in the sample. By contrast, most
DNA sequencing errors are likely to be 
singletons (i.e. they occur only once in a
data set).

If Awadalla et al. are correct, then the
actual process of exchange among mtDNAs
is unlikely to be anything resembling the
crossing over that goes on during meiosis
in the nucleus. The authors made two
suggestions for what might actually be
occurring. First is the possibility that 
in the zygote or early embryo, some
mtDNA that comes in with the sperm gets
taken up by maternal mitochondria and
somehow replaces a homologous seg-
ment in the maternal mtDNA. Ordinarily,
the paternal mitochondria and mtDNA
are degraded21, but perhaps some frag-
ments of DNA survive to be incorporated.
A second possibility is that the exchange
is actually between copies of the mtDNA
(or portions thereof) that moved into the
nucleus at some earlier date, and then
somehow moved back and became incorp-
orated in the mtDNA. As unlikely as both
of these explanations might seem, it
might be that an unlikely explanation is
just what is called for. Although Awadalla
et al. do not provide estimates of the rates
or sizes of gene transfer tracts, it might be
that a few rare events could explain the
pattern that has been described.

So why should we care if there is
some recombination among mtDNAs?
For evolutionary biologists, the concern
is that a true history that includes recom-
bination would obviate the ubiquitous
assumption of a bifurcating gene tree his-
tory. Any DNA, mitochondrial or other-
wise, that does not engage in recombin-
ation will necessarily have a branching
history (although it might only be
revealed to us by mutations that distin-
guish sequences and permit inferences of
history). But if recombination has
occurred then the true history is literally
a complex network and not a branching
tree at all. In fact, human mtDNA re-
searchers can rarely generate a particu-
lar gene tree estimate of any confidence –
as mentioned above, homoplasy is perva-
sive. Nevertheless, we assume that a
gene tree is the correct model and thus
discussions are often focused about the
timing of particular parts on a gene tree,
such as the most recent common ances-
tor of all the items in a sample. Such talk
does not make sense for a sample of
DNAs with a recombinogenic history.
Some other particular analyses would
also be undermined, such as those that
rely upon the distribution of pairwise 
differences, which assume a single
branching history22.

Fortunately, even if recombination is
in our mtDNA history, all would not be
lost. One of the most awkward features 
of mtDNA history, and one that is typi-
cally overlooked, is that it is but one of
many thousands of genealogical histories 
that our gene pool has experienced. Dif-
ferent genes have different histories and 
the variance among genes can be enor-
mous, just by chance. Thus, the mtDNA
was always bound to be atypical, just as
would any gene, even without the action
of something deterministic, such as natu-
ral selection. If recombination has been
occurring, then the mtDNA has a more
complicated history, but one that can be
expected to be closer to that for the aver-
age of all genes. The history might be
harder to decipher, but what is found
might be a more accurate estimate of
ancient human history.
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