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sequences, whereas the second relies on mathematical
models of population structure.

This review does not cover all aspects of popula-
tion structure; instead, we focus on models and
methods for the study of population structure that
use DNA sequence data, which we illustrate with
examples from the literature on human populations.
Our species has had a complex DEMOGRAPHIC HISTORY

and provides examples of many kinds of population
structure. Also, a considerable part of modern med-
ical genetics relies on an understanding of human
demographic history, so there is a strong demand for
high-quality human population-genetic research.

Starting simply
To gain a starting purchase, we need a simple population
model that does not have structure. Sewall Wright and
Ronald A. Fisher independently described what has come
to be the standard simple population model for most cir-
cumstances2,3. The main feature of the Wright–Fisher
model (BOX 1) is the persistence of a single population
of constant size, with random mating among individ-
uals (panmixia). For most purposes it is assumed that
the population has persisted for a long period (literally an
infinite length of time, for mathematical purposes).

In the early twentieth century, when the new science
of genetics was picking up steam, the big question
was whether Mendel’s rules of inheritance could be
reconciled with a Darwinian theory of evolution. In
the course of finding out that they were compatible,
the new science of population genetics was born1.
Today, as at the beginning, population genetics is the
study of how evolution works as a genetic process in
natural populations. It is a difficult science, which is
often highly mathematical in theory and approximate
in application. Real populations are rarely simple, so
it is difficult to research and develop theories about
them. Natural populations are also dynamic in many
dimensions: over time they change in size, density
and location, and over space they can fragment into
several populations and join with others. An aware-
ness of those complexities, and a desire to have evolu-
tionary models that are as realistic as possible, has led
many population geneticists to focus their efforts on
what has come to be called the ‘structure’ of natural
populations. This field has grown with the availability
of comparative DNA sequence data from natural
populations. However, growth has proceeded in two
different directions: the first relies on graphical depic-
tions of the branching evolutionary history of DNA
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DEMOGRAPHIC HISTORY

The reproductive history of a
population or group of
populations. This can include
population sizes, sex ratios,
migration rates, population-
splitting events, variation in
reproductive rates and times
among organisms, as well as
variation over time in all of these
quantities.
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POISSON DISTRIBUTION

A probability distribution that is
commonly used to describe the
frequency at which similar but
independent events can be
expected to occur over a given
period of time.

GENE EXCHANGE

The process by which genetic
material is shared among
organisms, which can occur
through sexual reproduction or
lateral genetic transfer.

GENETIC DRIFT

Random changes in gene
frequency in a population that
occur when a finite number of
progeny are formed by the
random sampling of gametes
from the parents.

HARDY-WEINBERG

A classical mathematical
principle in population 
genetics that describes the
expected frequencies of
genotypes for one locus after
one generation of random
mating if the allele frequencies
in the parents are known.

EVOLUTIONARY TREE

A graph or branching diagram
that describes the pattern of
evolutionary ancestry (historical
relationships) among a group of
organisms.

GENE TREE

A graph or branching diagram
that describes the pattern of
ancestry among homologous
DNA sequences from different
individuals of a population or
species.

PHYLOGENETIC TREE

A graph or branching diagram
that describes the pattern of
ancestry among different species
or other taxa.
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frequencies and, in the case of diploid populations,
departures from HARDY-WEINBERG expectations. These
measurements lend themselves well to the fitting of equi-
librium models, but generally do not have the informa-
tion content that is needed to assess whether model
parameters have changed over time. By contrast, a set of
DNA sequences from one gene often shows a large num-
ber of polymorphic sites with high information content
that will provide greater scope for the interpretation of
changing population-model parameters.

A divided science — to tree or not to tree?
When population geneticists began collecting DNA
sequence data from natural populations in the late
1970s, the field underwent a notable shift, and a split
developed between two main schools of thought. Unlike
allelic data, DNA sequence data can be readily applied to
the calculation of EVOLUTIONARY TREES, and some investiga-
tors quickly realized that these kinds of trees could be a
basis for the study of population history. Such 
GENE TREES are different from traditional PHYLOGENETIC TREES

(the former describe the pattern of DNA ancestry in a
population, the latter a pattern of taxon ancestry), but the
tools that SYSTEMATICS uses for building evolutionary trees
could be used to build population gene trees.

Using DNA sequence data to build gene trees was a
different way of doing population genetics. Instead of
focusing on numbers and mathematical models, this
new tree-based framework was fundamentally graphi-
cal. The main pioneers in this field were Wesley Brown
and John Avise, and the phylogenetic approach, as
applied to problems of population structure, became
known as phylogeography9. The growing field took
advantage of advances in methods for the estimation of
evolutionary trees and has become a well-recognized
discipline in evolutionary biology10,11.

But what became of traditional mathematical popula-
tion genetics as the popularity of the phylogenetic
approach grew? The field has thrived separately from
phylogeography. The high information content in DNA
sequences, and the historical information that is shown in
patterns of DNA sequence variation, have opened up new
areas of mathematical model development, which are
commonly referred to as ‘coalescent modelling’ in refer-
ence to a family of mathematical models of the common
ancestry of DNA sequences12–15. However, unlike tree-
based methods, COALESCENT THEORY is generally directed at
the effect of evolutionary forces on levels and patterns of
DNA sequence variation. An important focus of these
methods has been to develop ESTIMATORS of population-
genetic parameters, such as the population mutation rate
(generally denoted by θ; see later for further discussion),
the time since two populations separated from each other
and the rate of migration between populations.

The body of theory and statistical tools that constitute
modern mathematical population genetics lacks a famil-
iar all-encompassing name, such as ‘phylogeography’, so
hereafter we identify these methods by their common
reliance on SUMMARY STATISTICS. Unlike phylogeography,
summary-statistic methods make no use of the geneal-
ogy that underlies a data set. For these methods, the gene

Under these circumstances, the population can be repre-
sented by a single quantity — the population size
(generally denoted by ‘N’).

Real populations are different from Wright–Fisher
populations, as they often have complex geographies and
consist of many populations that are connected by 
GENE EXCHANGE. Individuals in most real populations are
more likely to reproduce with nearby individuals than
with distant individuals. FIG. 1 depicts four principal
classes of models that have been developed to consider
population structure.Analysis of these models has greatly
helped our understanding of how geography and limited
gene exchange can impact patterns of genetic variation.
However, in most applications the models contain a
partly hidden assumption that overlooks another impor-
tant way in which real populations depart from a simple
ideal. The assumption is that the populations have been
evolving in the model for a long time and have reached a
‘steady state’ or ‘equilibrium’ pattern of variation in and
between sub-populations. In general, the equilibrium
arises as a balance between the actions of mutation and
GENETIC DRIFT (which tend to make populations different)
and gene exchange (which makes them more similar)4.
Such models are useful for determining the types of pat-
tern of variation in and between populations that are
expected as a result of the structure model, assuming that
the model has been in place for a long time.

A different class of non-equilibrium models have
parameters that can change as a function of time5–8. For
example, population sizes might change over time, as
might the number of populations and the rates of gene
exchange. There is generally not a steady-state pattern of
genetic variation in non-equilibrium models because
the details of the model are different at different points
in time.

Equilibrium models are simpler than non-equilib-
rium models and seemed appropriate before DNA
sequence data became commonplace. At that time, the
basic genetic contrast between copies of a gene was
based on the idea of ‘alleles’, in which two copies of a
gene were either identical or different. However, when
several DNA sequence copies of a gene are obtained
from a natural population, each pair can differ in many
ways. With allelic data, the basic measurements are allele

Box 1 | The Wright–Fisher model

Sewall Wright and Ronald A. Fisher were the pioneers of population genetics.
Independently, they each made use of a simple mathematical representation of an
idealized population2,3. A Wright–Fisher population has the following main
components:
• A constant population size of N diploid individuals

• Non-overlapping generations, so that all individuals die following reproduction

• Random mating among individuals

• A random number of offspring per individual, which follows a POISSON DISTRIBUTION

By themselves, these assumptions are suitable for modelling the processes of genetic drift
and gene-tree depths. By adding further components for particular problems, it is possible
to use the model to study natural selection and population structure. For example, it is not
difficult to include neutral mutations to model genetic variation in the absence of natural
selection.A similar model with overlapping generations was developed by Moran93.
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in a tree29,30. Such processes might include gene
exchange, isolation by distance, past fragmentation
events (such as ALLOPATRIC DIFFERENTIATION) and range
expansions. Recently, Templeton applied this approach
to questions about the spread of human populations
out of Africa31. Data from several genes indicate that
modern populations might be the result of a complex
history that included several migrations out of Africa
over the past several hundred thousand years — an
interpretation that is in conflict with the idea that the
migrations that gave rise to present populations outside
of Africa did not begin until ~100,000 years ago24,32.

There are two components to NCA: a statistical test of
geographic structure, and a protocol for inference of the
causes of that structure if it is found. The latter has

tree is neither important nor is it considered for parame-
ter estimation. They begin, not with an evolutionary tree,
but by summarizing some aspect of the data (for exam-
ple, by counting the number of variable sites in or
between populations). Whereas the phylogeographic
approach does not rely on any explicit historical demo-
graphic model, summary statistics generally have little
meaning unless they are considered together with the
model under which they were calculated. FIG. 2 provides
an example of the contrast between the starting points of
the two approaches.

Gene-tree-based methods and applications
The underlying goal of tree-based phylogeographic
analyses is to discover the history of related popula-
tions (from one or several closely related species)
based on the depth and branching patterns of a gene
tree of DNA sequences9,10. So far, most studies have
focused on mitochondrial DNA (mtDNA)11,16, which
in most organisms is inherited from only one parent
as a single non-recombining unit. The mtDNA is also
often convenient because it has evolved quickly,
which allows access to more recent population his-
tory. Increasingly, nuclear genes have also been
included in phylogeographic studies16–22, although
the interpretation of such genealogies or haplotype
trees is difficult if there has been recombination, as is
common in nuclear genes.

Some classic mtDNA-based phylogeographic stud-
ies of humans are a good example of the benefits and
drawbacks of the phylogeographic approach23,24. These
studies generated excitement and controversy as they
indicated that present populations descended from a
relatively small population in Africa. The estimated
common ancestor for the mtDNA genome was
believed to have existed ~200,000 years ago, which is
consistent with an effective population size of ~10,000
individuals. The two principal observations were that
the tree depth, relative to a chimpanzee OUTGROUP, indi-
cated a recent pattern of common ancestry, and that
the most basal splits in the tree had only African
descendants. Much of the controversy surrounding
these claims arose from mtDNA sequence HOMOPLASY,
which greatly hindered gene-tree estimation. As inter-
pretations of recent African ancestry hinged on esti-
mated geographical locations of ancestral mtDNAs,
doubts about the gene-tree branching pattern lead to
doubts about whether the data supported an African
location of the human mtDNA ancestor25–27. Another
concern stems from the fact that mtDNA is inherited
effectively as a single LINKAGE BLOCK owing to the absence
of recombination, so other genes could be expected to
have different histories28.

Phylogeographic analysis begins with the estimation
of a gene tree, however it can be difficult to use a tree for
statistical tests of specific hypotheses. For this purpose,
many turn to a method that was developed by Alan
Templeton and colleagues, which is called nested-clade
analysis (NCA) (BOX 2). NCA is designed to distinguish
different historical processes that might have influenced
the geographic distribution of genetic variation as seen

SYSTEMATICS

A branch of biology that deals
with the classification of living
organisms on the basis of their
evolutionary relationships. This
differs from ‘taxonomy’ as
organisms are grouped on the
basis of shared ancestry, not just
on their similarities (which
might or might not correspond
to shared evolutionary history).

COALESCENT THEORY

A mathematical approach that
models the depths of gene trees
for samples that are drawn from
one or more closely related
populations.

ESTIMATOR

A method for calculating an
estimate of a parameter in a
model.

SUMMARY STATISTIC

A number that is calculated from
a data set, which represents much
of the information in the data.
For a set of DNA sequences, one
commonly used summary
statistic is S, which represents the
number of variable sites in the
sample. Summary statistics are
often easier to use to fit models to
data than would be the case with
the data itself.

OUTGROUP

A sample or group of samples
that are included in an
evolutionary tree because they
are known, or assumed, to
connect directly to the root of
the tree (that is, to the node of
the tree that represents the
common ancestor of all samples
in the tree).

HOMOPLASY

Identical character states (for
example, the same nucleotide
base in a DNA sequence) that are
not the result of common
ancestry (not homologous), but
arose independently in different
ancestors by parallel or
convergent mutations.

LINKAGE BLOCK

A region of DNA that is
inherited as a single unit owing
to a lack of recombination, such
as the mitochondrial DNA of
metazoans. The histories of
genes that are located in such
regions are not independent,
and are equally affected by all the
selective forces that have acted
anywhere in the linkage block.
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Figure 1 | Models of population structure. a | Island model of
migration. The simplest island model has a mainland population
with migration to one or more island populations. Island models
can vary widely in numbers of populations, sizes of populations
and rates of gene exchange. Island models are good for
understanding the effects of small population size and limited
gene flow on rates of genetic drift and levels of divergence
between island populations98. b | Stepping-stone model. Unlike
island models, this class of models specifically include a spatial
element, with individual populations only able to exchange genes
with adjacent populations. Stepping-stone models can be one-
dimensional (with populations in a line, as shown), two- or three-
dimensional99. c | Isolation by distance model100,101. If a stepping-
stone model is taken to the extreme, then every individual is
restricted in its local movement (or the distance that its genes can
travel). This leads to the idea of a population that is evenly
distributed over a landscape (two-dimensional in the figure, with
each individual being capable of moving only a short distance, on
average). If movement distances per generation are short, then
on average, individuals are much more closely related to nearby
individuals than to distant individuals. d | Metapopulation model.
In nature, not only do individuals move between populations, but
also individual populations come and go over time (t) with the
founding and extinction of entire populations being an important
component of population structure102,103.
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Limitations of gene-tree-based methods
Gene trees are appealing because they are graphically
accessible and not explicitly tied to any particular his-
torical model or previous idea of the locations and
boundaries of populations. Investigators are free to
take gene-tree patterns at face value, without precon-
ceptions about the models, and to follow a HEURISTIC

path of interpretation. By contrast, investigators that
rely on explicit population models, such as those in
FIG. 1, often face the difficulty at the outset of not
knowing what kind of model to apply.

The most pervasive and general difficulty with
gene-tree interpretation is that most demographic
histories (including the simple Wright–Fisher model)
lead to gene trees that vary widely in their topology
and branch lengths. This variance, often referred to as
STOCHASTIC VARIANCE in a population-genetic context, is
the variation in actual genealogical histories that are
experienced by different genes, which cannot be
reduced by increasing the sample size for a gene
(either by increasing the number or length of DNA
sequences). FIG. 3 shows how a wide variation in
branching pattern can occur, with different genes
seeming to have different histories even if they come
from the same populations. The large stochastic vari-
ance among genes means that any individual gene
tree (for example, based on mtDNA) will probably be
far removed from any estimate of history that would
be obtained using a large number of genes. This
means that a study based on one gene is usually not
sufficient to determine whether or not two popula-
tions are exchanging genes. Similarly, the depth of a
gene tree that includes samples from two populations
or species is often a poor indicator of when those
populations began to diverge34. Also, the overall
depth of a gene tree cannot be used to accurately pre-
dict what might be found at another gene35.

attracted much interest, as it seems to offer the promise of
detailed findings of the sort that have usually eluded
research on population structure. The INFERENCE-KEY com-
ponent of NCA is essentially a summary of the kinds of
patterns that would be expected in a network under dif-
ferent models of the causes of geographic structure in
the data30.Although, in some respects, they are quantita-
tive, the expectations that are represented in the infer-
ence key are not the result of analytical models, and the
inferences that result are not statistical in nature. The
method does not provide assessments of confidence for
any particular interpretation, and it is not known how
frequently an interpretation is incorrect — an NCA
assessment of a particular factor in the history of a data
set could, in fact, be the result of a history that does not
include that factor. The NCA method has been criticized
on these grounds, and simulations have shown that the
inference key can lead to conclusions of historical
processes that did not actually occur33.

ALLOPATRIC DIFFERENTIATION

The process of divergence
between populations or species
that are geographically separated.

INFERENCE KEY

A list of paired rules that are
used for diagnosis or
identification. Keys are a classic
tool for identifying organisms to
the species level, on the basis of
the presence or absence of
specific morphological
characters or character states.
A similar tool is used in nested-
clade analysis to distinguish
between different historical
scenarios.

HEURISTIC

A method of inference that relies
on educated guesses or
simplifications that limit the
parameter space over which
solutions are searched. This
approach is not guaranteed to
find the correct answer.

STOCHASTIC VARIANCE

In the context of gene histories,
this is the variation in gene trees
and mutations among unlinked
genes that have passed through
the same demographic history of
populations of organisms.

Outgroup TGTACGTACCG
Sequence 1 .C.....G.T.
Sequence 2 ...G.C.G...
Sequence 3 ..C..C.G...
Sequence 4 ..C..C.G..A
Sequence 5 C...T.C.C..
Sequence 6 ....T...C..

a b c
1 2 3 4 5 6

θ̂  =S / ∑ = =1
i
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Figure 2 | Contrasting phylogeographic and summary-statistic methods.
Phylogeographic and summary-statistic approaches to population-genetic analysis are
represented by their typical starting points, beginning with a data set of polymorphic sites in
a DNA sequence. a | A data set of six sequences, showing only the variable positions
together with the outgroup sequence. b | Phylogeographic studies begin with a gene-tree
estimate that is based on the data. c | Many population-genetic studies that take a
summary-statistic approach begin by estimating the fundamental population-genetic
parameter θ, assuming a Wright–Fisher population. Watterson’s (1975) estimate of the
population mutation rate (θ = 4Nu) is given by the formula shown, in which the number of
polymorphic sites (S) is 11 and the sample size (n) is 6 and u is the neutral mutation rate44.

Box 2 | Nested-clade analysis

For a set of DNA sequences that are sampled from one or more
populations, the first step in nested-clade analysis (NCA) is to
estimate the haplotype network, which is similar to a gene-tree
estimate. The difference is that in a network, sampled haplotypes can
be found at the internodes as well as the tips94. Each step along the
network represents one mutation change that was observed in the
data. Next, nested groups of haplotypes (clades) that are separated
from one another by one or more mutational steps are identified95,96.
A test of geographic structure determines whether samples from the
same population are closer to each other in the haplotype network
than would be expected by chance. Finally, if evidence of geographic
structure is found, the relationships between mutational distance and
geographical distance among haplotypes are interpreted using an
inference key of possible demographic factors29,30. The test and
subsequent inferences rely on two calculated geographical distances:
D

c
(clade distance) and D

n
(nested-clade distance). D

c
measures the geographical range of a given clade, and corresponds to

the average distance of each member of a clade from its geographic centre. D
n

measures the average geographic distance of
all members of a clade from the geographical centre of its higher-level nesting clade, which is also estimated by averaging
the coordinates of all members of the higher-level nesting clade. The inference key was constructed on the basis of expected
patterns of geographical association that can arise under three types of historical event: restricted gene flow, range
expansion and allopatric fragmentation. The program GeoDis can be used to conduct NCA97.
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short, with the common ancestor being a gene copy
that was among the first to carry the beneficial muta-
tion. mtDNA and other completely linked blocks of
genes are of concern in this regard because a beneficial
mutation at any one of the genes will alter the gene-tree
history for the others37.

Tree-based methods are also inherently limited by
the accuracy of gene-tree estimates. Many mitochondr-
ial data sets come from histories with large amounts of
recurrent mutation, so it is difficult to be sure that the
tree estimate (or corresponding network) accurately

Stochastic variance is also the reason why MONOPHYLY

of populations in gene trees is often a poor guide for
species status36. As divergence begins, monophyly
arises slowly and with wide variation among genes36.

Another difficulty with gene-tree approaches that
rely on a single locus is that the history of any one gene
might have been strongly affected by natural selection
and, therefore, might not reflect the demographic his-
tory of the sampled populations. In particular, genes
that have experienced the selective replacement of ben-
eficial mutations will have gene-tree histories that are

MONOPHYLY

The property that is attributed to
a group of samples in an
evolutionary tree that all share
the same common ancestor
exclusive of other samples in the
tree. A set of samples that
constitute an entire branch on
an evolutionary tree is said to be
monophyletic.

Figure 3 | The stochastic variance of gene trees. Coalescent simulations were done with six gene copies that were sampled
from two populations —‘pop1’ (green) and ‘pop2’ (red) — each with 2N gene copies. The populations split from an ancestral
population 4N generations ago and gene flow was simulated after separation at a rate of 0.5 migrants per generation in each
direction. Six simulations were done, and four are shown to illustrate the various histories that are indicated by branching patterns
and branch lengths. a | The tree indicates the presence of two long-separated populations that might have recently exchanged
gene copies so that some pop1 sequences cluster with pop2 sequences and vice versa. b | The tree indicates a history of two
diverging populations with a single instance of recent gene exchange from pop2 to pop1 (yielding a gene copy that is identified as
pop1 on the basis of sampling, but that clusters with pop2 sequences). c | The tree seems to indicate a history in which pop2
separated from pop1 some time ago, without subsequent gene exchange. d | The tree resembles the pattern that might be
expected if pop1 and pop2 were in fact a single population, as pop1 and pop2 sequences are intermingled.
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are compatible with each other. A statistic based on the
difference between the two — Tajima’s D58 — has been
widely used to test for changes in population size.
Other approaches have been developed to assess
departures from population-size constancy5,59–61. In
recent years, coalescent-based summary-statistic
approaches have also been applied to non-equilibrium
models5,6. Alternative summary-statistics methods
have been used to estimate the time of divergence
among populations, the rate of migration among pop-
ulations62 and the effect of population structure on
DNA polymorphism34,50,63–68.

Limitations of summary-statistics methods
The use of summary statistics necessarily goes hand-in-
hand with the adoption of a particular demographic
model, such as an island model or an isolation by dis-
tance model (FIG. 1). It is the model that specifies the
meaning of the parameters and the assumptions that
underlie them. This does not mean that investigators
must assume the model to be correct, as there are ways
to use the summary statistics to assess the fit between
data and a model69. It does mean, however, that the
scope of demographic models that can be explored by
an investigator is limited by the availability of statistics
for those models. By contrast, phylogeographic
approaches are not explicitly model bound.

Another problem with summary statistics is that
they do not necessarily take advantage of all of the
information in the data. For example, the simple
summary statistic S (the number of variable positions
in the DNA sequence) is directly connected to θ
(assuming a Wright–Fisher model), but samples from
two different populations might have a common S
despite having widely different demographic histo-
ries. By itself, S says little about history. One approach
to overcome this limitation is to summarize the pat-
tern of variation using several statistics. For example,
the POLYMORPHIC-SITE FREQUENCY DISTRIBUTION is a series of
counts that captures much of the information in a
DNA sequence data set70,71. It is also possible to select a

represents the true history. To the extent that the tree
estimate is wrong, the conclusions that depend on the
tree will also be wrong. In general, this problem is 
well appreciated because of the attention it has received
in systematics contexts (in which trees are often deep
and have histories with many mutations), and there 
is a large body of literature on the difficulties of tree
estimation and on how to assess confidence in tree esti-
mates38,39. A related problem is that many data sets
from nuclear genes have histories that include recom-
bination, which by their nature cannot be repre-
sented by a branching diagram40. If recombination
has not been too frequent, some recombination
events can be reconstructed from the pattern of vari-
ation, and this information can be incorporated into
a phylogeographic analysis41.

Summary statistics — methods and applications
Methods that take a summary-statistic approach to
DNA sequence variation have largely grown out of neu-
tral models (that is, models that do not include natural
selection) that were developed before the advent of
DNA sequence-based studies12,42–44. Much of the new
theory is directly connected to models that existed
before the coalescent age, and there are many contexts in
which allelic models and DNA sequence models are
directly interchangeable. For example, Wright’s classic 
F-STATISTIC indices of population structure45,46 are directly
translatable to a DNA sequence context47,48. Similarly,
the different equilibrium models that are shown in FIG. 1

have been examined using coalescent methods49–55.
The most commonly used summary statistics

focus on the theoretical idea of a population muta-
tion rate, typically denoted by θ, which is equal to
4Nu, where N is the population size and u is the neu-
tral mutation rate for the gene in question (FIG. 2). In a
Wright–Fisher population, the expected time to the
common ancestor of two randomly selected
sequences is 2N generations. So, the number of neu-
tral mutations that separate the two sequences is
expected to be 2N × u, multiplied by a further factor
of two because each descendant gene copy has expe-
rienced 2N generations, on average, since the com-
mon ancestor. The parameter can be estimated using
either the number of polymorphic sites in the sample
(S)44, the average number of pairwise differences
between the sampled sequences (k)56, or the number
of SINGLETON MUTATIONS (η)57.

When basic summary-statistics methods were first
applied to studies of human populations, it quickly
became clear that traditional equilibrium models were
not appropriate. For one thing, it was known that
human populations have grown, which violates a basic
assumption in the Wright–Fisher model. In this regard
one of the first non-equilibrium models to receive
considerable attention addressed population-size
change. It had been shown that although both S and k
can be affected by changes in population size, the
effects on k are stronger. So, one way to assess whether
data fit a constant-size population model is to see if
two estimates of θ, one based on S and the other on k,

F-STATISTICS

A method of summary statistics
that was devised by Sewall
Wright to describe correlations
among alleles that are sampled at
different hierarchical levels
(individuals, subpopulations and
total populations). F-statistics are
frequently used to describe the
presence of population structure.

SINGLETON MUTATIONS

Polymorphic sites in which a
rare base is found in only one of
the sampled sequences.

θA

θ1

θ2T

M2 M1

Past Present

Figure 4 | The isolation-with-migration model. This
model assumes that an ancestral population of constant size
and population mutation parameter θA separated into two
populations at time T. Each descendant population has its
own mutation parameter, θ1 and θ2, respectively. Also,
migration occurs between the two populations at rates M1

and M2. This is a general model that includes, as a special
case, the isolation-without-migration model (by setting the
migration rates to zero).
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the gene tree G, and therefore the value of F(G | D, Θ)
for any particular gene tree will usually not be useful
because of the large stochastic variance that is associ-
ated with G. This is true even if we use a tree that is
the best possible estimate of the true tree, given the
data. What we would like to do is calculate a related
function that takes advantage of all of the information
in the data, but does not depend on a particular tree
— that is, F(D | Θ). What is needed is a way to con-
sider all of the many possible gene trees that are 
consistent with the data. The newer family of methods
can do this, as they make use of coalescent calcula-
tions of the probability of obtaining a particular gene-
tree estimate as a function of a particular historical
model. Let this probability be denoted by P(G | Θ).
We can then consider all of the possible gene trees,
and weight each by their probability, to calculate the
function F(D | Θ) = Σ

G 
F(G | D, Θ)P(G | Θ).

In practice, a computer program (such as MDIV,
Batwing, Genetree or LAMARC) is used to carry out
these calculations and to handle the large number of
gene trees. Fortunately, the summation usually need
not include all possible trees as long as the sample of
trees is a random collection of those that are possible
for a given data set. So, we might not know the value
of F(D | Θ) precisely, but we might still be able to
obtain a good estimate of it. In the most complete
implementations, F(D | Θ) is the likelihood of a set of
model parameter values for a given tree, and we can
estimate complete likelihood or probability distribu-
tions for the model parameters. These methods all
take full account of the inherent stochastic variance
of gene trees by considering all (or a great many) pos-
sible trees and weighting them in proportion to how
likely they are given the data and the model. Such
methods have been used to estimate population
mutation rate81–83, population growth rate84,85, popu-
lation recombination rates86,87 and migration
rates84,88. These probability-based methods take
advantage of all of the information in the data and,
increasingly, can be applied to complex models. One
of the most complete implementations concerns 
a demographic model that is of wide interest for 
the study of diverging populations89–91 (FIG. 4). The
‘isolation-with-migration’ model has many parame-
ters (six) compared with most other methods, which
have only one or two, yet the method for estimating
the parameters is able to generate complete probability
distributions for all of them92.

The drawback of these methods is that they are com-
plex and difficult to implement. Also, they have not yet
been developed to the extent that they can be applied in
an accessible exploratory manner that mirrors the
heuristic thought process that often accompanies the
examination of individual gene-tree estimates. However,
these methods are being developed for increasingly com-
plex models, and, in principle, it might be possible to
develop general computer-based tools that offer a wide
array of potential models, together with statistical meth-
ods to choose among them. The methods can also be
applied simultaneously to data from multiple loci,

set of summary statistics so as to optimize the capture
of information and allow estimates of model parame-
ters that are of nearly the quality that would be found
using all of the information in the data72,73.

Summary statistics offer no panacea for the wide
stochastic variance that occurs among genes, and con-
clusions that are based on a single gene are likely to be
misleading because of this variance or the effects of
natural selection, as is the case in a phylogeographic
context. However, an important difference is that with
a mathematical approach it is sometimes possible to
estimate the stochastic variance that is associated with
the summary statistics, or at least to estimate the over-
all variance, which includes both the stochastic and
the sampling components of the variance44,56,74.

Bridging the divide
The study of evolution in structured populations has
been divided between a gene-tree-based phylogeographic
approach and the more traditional mathematical
approach that relies on explicit models and summary sta-
tistics.What is needed are methods that have the advan-
tages of both approaches, that are not tightly bound to
specific assumption-laden models and that take full
advantage of the data, as is the case with tree-based meth-
ods, and yet provide the quantitative and statistical rigour
of the summary-statistics methods33.

There are some methods for which estimates of
model parameters are based on gene-tree estimates.
These hybrid approaches begin with a tree estimate
and then proceed to estimate model parameters from
features of the tree. As with gene-tree approaches in
general, these methods must usually overlook the
uncertainty that is associated with the gene tree,
including the possibility that the tree topology is
incorrect, as well as the stochastic variance among
trees that are sampled from the same population. For
example, Slatkin and Maddison75 developed a
method for estimating the population migration rate
between two populations, using the branching pat-
tern of an estimated gene tree. A different group of
methods use gene trees but focus on the branch
lengths between the nodes of the tree, rather than 
on the branching pattern, to detect changes in the
effective population size (Ne)76–79.

In recent years, population geneticists have begun to
develop new approaches that in some ways unite the
tree-based and summary-statistic-based methods14,80.
There are two main limitations of phylogeographic
methods: the possibility that a gene-tree estimate
differs from the true tree and the wide stochastic vari-
ance among the trees of independent genes. To see
this in a rough mathematical framework and to intro-
duce the newer family of methods, consider an esti-
mated gene tree G that is based on a data set D.
Suppose that we would like to calculate the value of a
function F of that tree, which is based on D and
assumes a particular historical model Θ — that is,
F(G | D, Θ). One kind of function that is often useful
provides an estimate of a parameter in the model. The
difficulty is that the value of the function will vary with

POLYMORPHIC-SITE 

FREQUENCY DISTRIBUTION

A polymorphic site in a DNA
sequence can be described by the
frequency of one of its variable
bases. The distribution of these
values for all the polymorphic
sites in a sample can be
described using a histogram or
bar chart. The shape of the
histogram can provide
qualitative information on the
processes that are involved in the
history of the sample.
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will be able to take full advantage of all of the information
in the data to explore a wide variety of historical models
in a way that allows assessments of how likely different
models are, and allows estimates of the components
(parameters) in different models.

particularly if those loci are effectively unlinked so that
their histories are independent in the model. As larger
data sets become available for increasingly large portions
of the genome, these methods should be able to grow
with them. The hope is that in the future, investigators
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