
Copyright 0 1991 by the  Genetics Society of America 

The  Structure  of  Genealogies  and  the  Distribution  of  Fixed  Differences 
Between DNA Sequence  Samples  From  Natural  Populations 

Department of Biological Sciences, Rutgers  University,  Nelson  Laboratories,  Piscataway, NEW Jersey 08855 
Manuscript received October 8, 1990 

Accepted for publication April 13, 1991 

ABSTRACT 
When  two  samples of DNA sequences are compared,  one way in  which they may differ is  in the 

presence of fixed differences, which are defined as  sites at which  all  of the sequences in one sample 
are different from all  of the sequences in a second sample. The probability distribution of the number 
of fixed differences is developed. The theory employs Wright-Fisher genealogies and  the infinite sites 
mutation model. For the case  when both samples are drawn randomly from the same population it is 
found that genealogies permitting fixed differences are very  unlikely. Thus  the mere presence of 
fixed differences between samples is statistically significant, even for small  samples. The theory is 
extended to samples from populations that have been separated for some time. The relationship 
between a simple  Poisson distribution of mutations and  the distribution of fixed differences is described 
as a function of the time since populations have been isolated. It is  shown  how these results may 
contribute  to improved tests of recent balancing or directional selection. 

C OMPARISONS of DNA sequences  from  differ- 
ent species often  make use of the typological 

view that observed  differences are characteristic of 
the species sampled. In fact, closely related species are 
expected to  share  sequence  variation to the  extent 
that it has persisted since the time of species diver- 
gence (see, e.g., PAMILO and NEI 1988). One way of 
describing DNA sequence  differences  between  re- 
cently diverged  populations is to measure the average 
number of differences found  among all possible com- 
parisons of sequences  from one population with  se- 
quences  from the second population. The net diver- 
gence (NEI and LI  1979) is equal to this quantity less 
the average of the variation within each of the two 
populations. TAKAHATA and NEI (1985)  have  found 
the variance of net divergence under  standard as- 
sumptions: infinite sites model (KIMURA, 1969); no 
recombination; and Wright-Fisher genealogies. 

An alternative  descriptor of sequence  divergence is 
the  number of fixed  differences, which is defined as 
the  number  of sites at which all of the sequences in 
one sample are  different  from all of the sequences in 
a  second sample. Unlike net divergence, the  number 
of fixed differences is a meristic character of the type 
used for maximum parsimony reconstruction of evo- 
lutionary  trees. 

The study of fixed  differences  between samples of 
DNA sequences was made by considering the genea- 
logical process of gene samples. Under  the model and 
assumptions used by TAKAHATA and NEI (1985),  there 
are two conditions that must be  met  for  fixed  differ- 
ences to occur  between two random samples of genes: 
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(1) the genealogy of the two samples must include  a 
clade of all items in one of the samples, and this clade 
must be exclusive of items in the  other sample; and 
(2) mutations must occur on  the  branch of the tree 
that  connects the exclusive clade to  the  other lineages. 

Figure 1, in  which three possible genealogies are 
depicted  for two samples of three sequences each, 
illustrates the conditions necessary for  fixed  differ- 
ences. In Figure  1 A, there is no  node  that represents 
the common ancestor of all of sample A,  exclusive of 
sample B; nor is there a  node  that  represents  the 
common ancestor of  all  of sample B ,  exclusive of 
sample A. In this case, it is not possible to have  a 
mutation in the genealogy of these samples (e.g., in- 
dicated as a tick mark  somewhere on  the drawing) 
that is passed on  to only sample A or only sample B.  
In Figure lB,  node 3 represents  a  common  ancestor 
for only sample A as does node 2 for sample B .  Any 
mutations  that  occurred in the lineage that persisted 
between node I and  node 2 or the lineage between 
node I and  node 3 would be  observed  as  a fixed 
difference between the two samples. Figure IC is 
similar, except  that there is no  node  that  represents 
the  common  ancestor  for only sample B.  In this case, 
mutations in the lineage that persisted between  node 
2 and  node 3 would appear as fixed  differences in the 
sample. 

The theory begins with a  consideration of two sam- 
ples of sequences that  are  both  drawn randomly  from 
the same population. The theory is then  extended  to 
samples from  populations  that have been isolated for 
some period of time. In  both cases, expressions for 
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FIGURE 1 .-Examples of sample  genealogies. 

the  expectation, the variance and  the probability den- 
sity  of the  number of fixed differences are  found. 

THEORY 

Samples  from  a single population 
Genealogical  structures: Consider  the  standard 

Wright-Fisher model commonly used in coalescent 
modeling ( i . e . ,  a  discrete  generation model with N 
diploid individuals in  which each generation of 2N 
gene copies is formed by sampling 2N times, with 
replacement,  from  the previous generation). Assume 
that  recombination  does  not  occur. If a  random sam- 
ple of n gene copies are  drawn  from  the population 
in generation  zero,  then the probability that these n 
were descended  from n - 1  ancestors t generations 
prior  to  generation  zero is, to  a close approximation, 

/ \  f I \ \ f--I 1 1" i i J  
2N 2N 

This geometric  distribution can be closely approxi- 
mated with an  exponential  distribution  having  param- 
eter (4 ) /2N.  For the  remainder of this paper,  the 
convention of using time in units of 2N generations 
will be followed. Thus  the probability that  the waiting 
time until n items have n - 1  ancestors is t ,  in units of 
2N generations, is approximately  equal  to 

See HUDSON (1990)  for  an accessible review of coal- 
escent population  genetic modelling. 

A bifurcating genealogical tree of a sample of n 
items has n - 1  branch nodes. For  convenience the 
nodes are indexed so that in the  time  between  node i 
and node i - 1 there  are i separate lineages. The state 

of n separate lineages at t = 0 is referred to as node n 
and  the  root  node is referred  to as node 1. Thus, if 
we consider the construction of coalescent genealogies 
as a process that  extends  into  the past, node i is formed 
by the  joining of two of i + 1 lineages. The distribution 
of the  length of this time  interval is exponential with 
parameter (4). 

Consider the case where two samples have been 
randomly drawn  from  a single Wright-Fisher popula- 
tion. Let nA and nA represent  the sizes of samples A 
and B ,  respectively, and let n = + nH. If all sample 
A lineages coalesce such that  there is a  node i that 
represents  a most recent  common  ancestor to all nA 
lineages, then we  say that sample A coalesces at  node 
i; or alternatively,  that sample A forms  a clade at  node 
i. If that clade includes no lineages of sample B,  then 
we  say that  the clade is exclusive. 

Calculation of the probability density of fixed dif- 
ferences between two samples begins with a combi- 
natorics problem ( i .e . ,  how many of  all  possible 
genealogies include  an exclusive clade of one of the 
samples), and  then  proceeds  through several nested 
levels  of assessment of conditional probabilities. As- 
sessment of the distribution of the time  interval during 
which mutations can appear as fixed differences be- 
tween the samples proceeds through  three distinct 
steps. 

The probability  that one of the  samples  forms  an 
exclusive clade at node i: It is useful to begin by 
finding  the total number of  possible genealogies. Con- 
sider  that any one of (*;') possible pairs of lineages 
will join (i.e. have a most recent  common  ancestor) at 
node i. Since a sample of n items will have n - 1 
branch nodes, the  total  number of  possible genealo- 
gies is 

Note this quantity is larger  than  the  number of tree 
topologies (see, e.g., FELSENSTEIN 1978).  For every 
topology or branching  pattern  there may be multiple 
genealogies that are distinct in terms of  how the nodes 
are  ordered in time. 

Let P(i)  be  the probability that  either of the samples 
forms  an exclusive clade at  node i. Consideration of 
genealogical structures (see Figure l) ,  shows that if 
one sample forms  an exclusive clade at  node i, for i 2 
3, then  the  other sample must necessarily form  either 
an exclusive clade at  node 2 or a nonexclusive clade 
at node 1 .  By this reasoning we let P(i)  = 0  for i < 3. 
It also  follows that an exclusive clade for  a sample, say 
sample A ,  must include exactly nA - 2 branch  nodes, 
not  including the clade node. Thus it is not possible 
for sample A to form  an exclusive clade at node i for 
i > (n - 1) - (nA - 2) = nB + 1,  nor is it  possible 
for sample B to  form  an exclusive clade at node i, 
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for i > nA + 1 .  It follows that P(i) = 0 for i > 
max(nA + 1 ,  nB + 1 ) .  

Calculation of P(i)  requires  enumeration of the 
possible genealogical structures involving n - i nodes 
of index greater  than  or equal to i that include an 
exclusive clade at  node i. In the case of an exclu- 
sive clade of sample A lineages, nA - 1 of the n - i 
nodes join pairs of sample A lineages and ( n  - i) - 
(n,, - 1 )  = nB - i + 1 join pairs of sample B lineages. 

The calculation of the  number of genealogies that 
are possible between node n and  node i ,  with an 
exclusive clade of sample A at  node i, includes three 
components: the  number of  ways that nA items can 
coalesce, 

W A ) ;  (4A) 

the  number of ways that sample B lineages can coa- 
lesce through nR - i + l nodes, 

and  the  number  of ways that nA - 2 nodes and ng - 
i + 1 nodes  can be ordered in time, 

Between node n and  node i there  are a  total of 
F(n)/F(i) possible genealogical constructions. The 
product of quantities  (4A),  (4B), and (4C) is the num- 
ber  that  contain exclusive clades of sample A lineages 
that coalesce at  node i. Calculation of P(i) also includes 
the quantity F(i) since there  are this many different 
genealogies between nodes i and I, for every partial 
genealogy between node n and  node i. In summary, 
the  number of genealogies that  include an exclusive 
clade of sample A at  node i is 

n - i - 1 F(nA)F(n,)F(i) ( 7 ~ 4 - 2 )  F ( i - 1 )  

For  an exclusive clade of sample B lineages, 

(.; 1; l )  

replaces (4C) in (5).  Then 

The number of genealogies that  include an exclu- 
sive clade of either sample is 

c 
1=J nA - nB - 2 

The probability  that  the  branch  from node i con- 
nects  with node j :  Let P(j l i )  represent  the probability 
that  node i is directly connected to  node j ,  where 
i - 1 r j  2 1 .  There  are i lineages in the time  interval 
between nodes i and i - 1 ,  and  there  are (4) possible 
pairings among  them. Since only i - 1 of these possible 
pairings include the lineage that  originates at  node i, 
we can describe the probability that  node i connects 
directly with node i - 1:  

Similarly, 

(1  -;)A, 
is the probability that  node i connects directly with 
node i - 2. Then 

The probability  that  the length of the  branch, L, 
is Z: Since the distribution of lengths between any pair 
of nodes i and j is exponential with parameter (i), the 
expected  length between nodes i and j is 

1 1 1 
E (L l i , j )  = - + 

( 9  t i 1 )  ( i : I )  
+ . . .  +- 

2 2  
j i  

- --" , for j > 1 .  (9A) 

Equation 9A does  not apply for j = 1 because in 
this case the sample  that  did  not  form  an exclusive 
clade at  node i necessarily forms  an exclusive clade at 
node 2 (see Figure 1). Whenj  = 1 ,  the total  length to 
be  considered includes twice the distance between 
nodes I and 2. Thus 
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The same reasoning  for the variance yields bution of the  number of mutations is Poisson so that 

1 1 1 V(Lli,j) = - 2 + . . . +  

( i f + ( i i 1 )  (jjlf' 
for j > 1, (IOA) 

and 

V(Ll i ,  1) = V(Lli, 2 )  + 4. 
Let P(L = l l i ,  j )  be the probability that  the  length 

of the  branch  between  node i and  node j is 1. Since 
the length is the sum of i - j independent  random 
variables, the probability can be calculated by taking 
the convolution of i - j exponential  distributions. 
From TAKAHATA and NEI  (1985), f o r j  > 1, 

P(L = l l i , j )  

When j = 1, L will include twice the distance between 
nodes 1 and 2.  If we let z be  an instance of a  random 
variable representing  the  time  between  nodes 1 and 2 
then 

P(L = lli, 1) = P(L = 1 - 2 z l i ,  2)e-' dz 

1 

= l P(L = z l i ,  2)- 
e -V-2)/2 

2 
dz .  

This can also be  represented 

s=2 
S f 7  

where 

1 
p(r) = 2 ,  for r = 2. 

The distribution of fixed differences: Because the 
neutral  mutation process is isolated from  the  genea- 
logical process in coalescent models, the proba- 
bility density of the  number of mutations given 1, 
P(M = mll ) ,  will vary depending  on what mutation 
model is used. For the question at  hand, we use the 
infinite sites model (KIMURA 1969), in  which every 
mutation is assumed to  occur at a  different site and is 
distinguishable from all other mutations. The distri- 

e-"'(pl)" 
m! 

P(M = mll)  = ~, 

where /.L is the  neutral  mutation  rate  per 2N genera- 
tions ( i e . ,  2N times the  neutral  mutation  rate  per 
generation). Furthermore,  for a  branch between 
nodes i and j, 

E(Mli, j )  = ILE(Lli, j ) ,  (14) 

and 

V(Mli,  j )  = pE(LJ i ,  j )  + p 2 V ( L J i ,  j ) .  (15) 

Combining the components of genealogical struc- 
ture  and mutation yields a  compound  distribution  that 
represents the probability that samples A and B are 
separated by m mutations: 

Pn,,mJ(M = m) 

= l P ( M  = m 11) 

Ilrax(nA+l,nlJ+l) i - l  

P(i) cP( j l i )P(L  = l l i , j ) d l  
1=3 j =  1 

max(nA+ 1 ,n,+ 1) i-  1 I 

= /p c P(i) c P(jl i )  n p(r) 
r=3 j =  1 r = j + l  

i i "1 

r=j+ c 1 ( ( P + P W + I  s = j +  n 1 P ( s ) - P ( r ) )  9 

s f r  

for m > O .  (16) 

Note  that pm/(p + p(r))"" is a monotonically decreas- 
ing  function of m, and  thus so is P,,,,,(M = m).  This 
means that  the  mode of this distribution is  always 
zero. 

It is clear that  there  are two distinct causes for  an 
absence of fixed  differences  between  the samples. One 
occurs when no mutations  happen on  the  branch  that 
separates the genealogies of the two samples. The 
probability of this can be calculated using expression 
(16) with m = 0. The second cause of zero  mutations 
is when neither sample has a genealogy exclusive of 
the  other ( i . e . ,  no exclusive clades). The probability of 
this occurring is equal to 

1 - P(i). 
max(nA+l,ng+l) 

i=3 

When m = 0, this quantity  should  be added  to expres- 
sion (16)  to find the total probability of zero  muta- 
tions. To further distinguish these types of events it 
may be useful to calculate the probability of m  muta- 
tions gzven that the genealogy includes a clade of one of 
the samples. This can be calculated simply by replacing 
F(n) in expression (6) with expression (7) and  then 
using this conditional  form of P ( i )  in (1 6). 
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The expectation and variance of M can  be found 
without  resort to  (1 6): 

E(M) = P E W  
max(n,+l,n,+l) 1-1 

Samples from isolated  populations 
Genealogies  and  mutations  during  isolation: Con- 

sider the case when samples are taken  from two pop- 
ulations that  have  been isolated for  some  time T (in 
units of 2N generations), and assume that  both  popu- 
lations are  the same size as the ancestral  population. 
For sample A ,  the probability that nA genes sampled 
at time zero are descended  from exactly nAT ancestral 
genes T units of time ago, is given by TAKAHATA and 
NEI ( 1  985).  For ?ZA > nA, > 1 ,  

For nA, = nA and nA, = 1 the quantities are 

and 

Pn,4(l IT) = l T P ( L  = IlnA, 1) d l  

respectively. Quantity  (19C)  can also be  represented 
as 

where 

and 

s#r 

For those cases when one sample coalesces com- 
pletely between the time of sampling and T ,  there will 
be  an  interval during which mutations can occur and 
appear as fixed differences. The probability that this 
interval, A, takes on  the value X can, in the case of 
sample A,  be described by the  truncated  distribution 

for 0 5 X 5 T .  (20) 

The numerator, P(L  = T - XlnA, l ) ,  is calculated with 
expression (12) with the exception that (5) is used 
rather  than p(r ) .  The first two moments of this distri- 
bution are 

and 

Thus  the variance is 

Vn,,T(AIT) = En,,T(A21T) - E ~ , , T ( A I T ) ~ .  (23) 

For  a given interval X, the distribution of mutations 
is Poisson as in (1 3). However, when X represents  an 
instance of a random variable, the probability that m 
mutations  occur is a  compound  distribution, 

Pn,,~(M = mlT)  = P,,,T(A = XJT)P(M = mlX) dX, lT 
which simplifies to 

Pm'$(nA) 5 
PnA( 1 IT) r=2 
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In  determining  the  moments of this distribution, 
the Poisson terms in the  numerator of (24) where 
summed  over  the  range of m (0 5 m < 03) and it was 
found  that  the  double  summation simplified to a  Tay- 
lor series of an exponential  function. Thus,  the first 
and second  moments are 

and 

respectively. The variance follows from  the usual re- 
lation 

it can be shown that 

tation given in (25) and  the  expectation of the Poisson 
distribution, PT, for increasing values of T. We  find 

lim(rT-EnA,T(MIT))=Ir -. 
n.4 1 

T” 

r = 2 ( ; )  

Thus we see that  at  the limit, the  expected  number of 
mutations is equal  to that  expected if A where  fixed 
at T less the  expected  number of mutations  that would 
occur in the coalescent time  of a sample of size nA 
(see 14). 

The  distribution of fixed differences between 
samples  from  isolated  populations: Expressions de- 
veloped in the previous  section, together with expres- 
sions ( 1  3) through ( 1  8), can be used to describe the 
expectation and  the variance of the  distribution of 
fixed differences  between  populations isolated for 
some time T. The expectation, 

En,.t,n,PlT) 
nA na 

= 2 PnA(nA,IT) Pna(nB,IT)E(MlnAT, %,), (28) 
n A T =  I fin7=] 

requires calculation of E(MlnA,, nB,). When nA, > 1 
and nB, > 1 the situation is similar to  that in ( 1  4), so 
that 

E(M I n ~ , ,  128,) 

max(nA7+ 1 ,nB7+ 1) i- 1 

= P(i) P(jli)E(Mli,j). (29A) 
i=3 j= 1 

When  either nA, = 1 or nB, = 1 ,  then, in the case of 
nA, = 1 ,  

E(MIl,nB,)= C (jlnB,+ l)(E(MlnB,+ 1,j) 
nn7 

j =  1 

En,+T(MI T )  = PEnAAAI T )  
and 

VnA.T(MI T )  = PE~,.,,T(AJ T )  + P2VnA.T(Al T ) .  

The distribution of the  number of  mutations in the 
interval A should  come to resemble  a Poisson distri- 
bution with parameter T for high values of T. This is 
because X becomes closer to  the fixed  quantity T as T 
increases, and  for a  fixed  time  interval the  distribution 
of mutations is Poisson (see 13). One way to check 
this is to  examine  the  difference between the expec- 

The expression for  the variance, 

VnA.n”(MIT) 
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follows a similar development.  When 
nB, > 1, 

V(M)  nAT, 128,) 

nA, > 1 and 2. When one sample has coalesced prior  to T and 
the  other has not,  the total  length includes two inde- 
pendent  random variables. For  example, when sample 
A has completely coalesced prior  to T ,  then 

P(L = 1 ,  nB,) = p(jlnB, + 1 )  
"BT 

j= 1 

i t P n , i , T ( A  = XIT)P(L = 1 - h ( n ~ ,  + 1 , j )  dX, (34) 

w h e r e [ = T w h e n l ? T , a n d ~ = l w h e n l < T .  
3. When both samples have coalesced prior  to T 

then  the total length is the sum of three  independent 
random variables. Let the length of the  tree between 
T and  the time of node 1 be  described by an  exponen- 
tial distribution with parameter 1/2 [see ( 1  l ) ] .  Let !J 
represent  the sum of the length  between the time of 
sample A coalescence and T and  the  length between 
the  time of sample B coalescence and T. Then 

P(Q = o) 

= I ' P n A , T ( A  = XlT)PnB,7(A = o - XIT) dX. (35)  

W h e n O I w < T , y = Q a n d 6 = ~ . W h e n T 5 ~ 5 2 T ,  
y = o and 6 = T. 

The distribution of the length of the sum of all 
three  random variables is 

P(L = 1 I 1 ,   1 )  = S P ( 0  = o)e-('-w)'2 do 

where u = 1 when 1 5 2T, and c = 2T when 1 > 2T. 

2 0  9 (36) 

RESULTS 

Samples from a single population: Table 1 shows, 
for  a variety of sample sizes, the  proportion of all 
genealogies that  include  an exclusive clade. It is ap- 
parent  that this proportion is less when the sample 
sizes are similar and decreases as total sample size 
increases. It is also clear that  a small minority of 
genealogies include exclusive clades, even for small 
samples. This last finding leads to a simple statistical 
statement  that may be  appropriate  for  some samples. 
Under  the assumptions of the model, any time that 
two samples are drawn  from  a  natural  population and 
observed to have one or more fixed  differences be- 
tween them,  then  the implied genealogical structure 
of the  entire sample is so unlikely as to suggest a 
failure of the model. Put  more briefly, anytime two 
random samples, one of size 3 or  more  and  the  other 
of size 4 or more, are found  to have one  or more 
fixed differences,  then that  number of differences is 
statistically significant. 

It  should be stressed that  these results are only 
applicable when sample designations are applied prior 
to evaluation of fixed  differences. Thus, for instance, 
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TABLE 1 

The probability  that the genealogies of the two samples are 
exclusive of each other 

2 
3 
3 
2 
3 
4 
5 
2 
5 

10 
2 

10 
25 

4 
3 
4 
8 
7 
6 
5 

18 
15 
10 
48 
40 
25 

6 
6 
7 

10 
10 
10 
10 
20 
20 
20 
50 
50 
50 

0.147 
0.080 
0.044 
0.075 
0.015 
0.006 
0.004 
0.035 

9.0*10+ 
3.4*10"' 

0.014 
9.0*10-I' 
2.1*10-15 

fixed differences  observed  between two samples col- 
lected from  different localities could  be used to reject 
a null hypothesis of panmixia. These results are  not 
directly applicable to  the case when some pattern of 
fixed differences is observed within a sample and  one 
might wish to subdivide the sample on  the basis of 
observed differences. 

In some cases, prior knowledge about  the genealogy 
of two samples can be useful. For  example, the 
genealogy of two samples that  are known to have a 
fixed difference between them must include an exclu- 
sive clade of one  or  both samples. Expression ( 1  6) can 
be easily modified to a  conditional probability density, 

P ( M = m l M > O ) =  
P(M = m) 

1 - P(M = 0)' 

the probability that two samples have m fixed  differ- 
ences given the presence of at least one  fixed  differ- 
ence. 

This distribution is especially appropriate  for sam- 
ples of genes that  are known to differ in the electro- 
phoretic mobility of their  corresponding  proteins.  For 
example KREITMAN (1 983) sequenced eleven copies 
of the Drosophila  melanogaster Alcohol Dehydrogenase 
(Adh)  gene  including five copies associated with a fast 
(AdhF)  electrophoretic  phenotype  and six copies as- 
sociated with a slow (AdhS)  electrophoretic  pheno- 
type. Assuming that  the  electrophoretic  difference 
was caused by a single fixed  difference, we can use 
expression (37) to ask whether  the  observed  number 
of fixed differences are  more  (or less) than we expect 
by chance. More explicitly, if x is the observed number 
of fixed differences, then  the probability of observing 
x or more fixed differences is 

P(M L xlM > 0) = 
Z X  P(M = m) 

1 - P ( M =  0) 

2 0.4 - 
4 - e 0.3 - 
8 
$ 0.2 - L . 

0.1 - * *  

0 8 1 6  2 4  3 2  

M 
FIGURE 2.-The probability of m mutations given that m is 

greater  than zero. Results for  three  different  mutation  rates  are 
shown. In all cases n.+ = nH = 5. 

A similar expression can  be  developed  for the  proba- 
bility  of observing x or fewer  fixed differences. 

In  the case  of the Kreitman data,  the actual number 
of fixed differences is 3. The mutation rate  per site 
per 2N generations was estimated  (from the observed 
average heterozygosity per site) to be 0.003, which 
corresponds to a  mutation rate  per 2N generations 
for  the  entire length of 2721 base pairs of approxi- 
mately 8. Using expression (38) we find that  the 
probability of observing 3 or more  fixed  differences, 
given at least one  fixed  difference, is 0.603. One 
difficulty with this example is that two of the se- 
quences (Fl-2S  and  Fl-F)  appear  to reflect recombi- 
nation events involving sequences that otherwise in- 
clude fixed differences between the two allele classes. 
Excluding these two sequences, we observe 7 fixed 
differences  between  a sample of 5 AdhS alleles and 4 
AdhF alleles. The probability of 7 or more fixed 
differences is 0.3054. 

This example illustrates a  curious  property of the 
probability distribution of fixed differences between 
samples from  the same population. Regardless of the 
sample sizes and mutation  rates, the mode  of the 
distribution is always zero and  the distribution  de- 
creases monotonically as m increases. Even for very 
large  mutation  rates, m fixed differences is  always 
more likely than m + 1 fixed  differences.  For high 
mutation  rates, the distribution becomes very flat SO 

that  a wide range of outcomes is likely. Figure 2 
illustrates this property  for two samples of 5 gene 
copies each. 

In the case  of the Kreitman  data, we see that  prior 
knowledge of at least one fixed difference was fol- 
lowed by the observation of 7 fixed  differences  (ex- 
cluding the possible recombinants). Yet because the 
mutation rate is high  (for 2721 sites) this is a likely 
outcome. Even an observation of 30 fixed differences 
would not  be inconsistent with the model, since the 
probability of 30 or more fixed differences is 0.055. 

Samples from isolated  population: Examples of 
the  expectation and variance of the  number  of fixed 
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differences,  as  functions of T,  are given in Figure 3. 
From Figure 3A it is clear that  both  the  expectation 
and variance become essentially linear  functions of T 
with slopes of 2p, for  high values of T. This is expected 
because the major  component is increasingly Poisson 
and  the  components  due  to sample coalescence be- 
come relatively less for  increasing T.  The vertical 
distance between the lines for  the variance and those 
for  the expectation is largely accounted  for by the 
quantity 4p2 + 2~ [see (31C)l. For low values of T 
(Figure 3B), the distribution is dominated by the 
coalescent process. Though monotonically increasing, 
the expectation and variance have different slopes. 

For the examples in Figure 3 and  for a wide range 
of sample sizes and mutation  rates,  for which results 
are  not shown, the variance as a  function of time takes 
on a slope of approximately 2~ at  or below T = 3. 
This suggests a  generalization:  for T > 3, the distri- 
bution of fixed  differences  between samples from 
isolated populations resembles a Poisson distribution 
having parameter 2Tg. In other words, when the time 
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FIGURE 4.-The  probability of zero fixed differences  between 

samples fl-onl populations isolated for  time T.  Examples are given 
for two different  sample sizes and  for two different  mutation rates. 
Also provided is the  zero  term  from a Poisson distribution having 
parameter 2 T p .  

FIGURE 3.-The expectation  and 
variance of the  distribution of  fixed 
differences  between  samples from 
isolared populations. In all cases, 
p = 5 .  A, provides  results for a wide 
range  of T values. B, provides  results 
for low values of T. 

since isolation is greater  than 6N generations,  then 
the distribution of fixed differences fits the  standard 
neutral model of molecular evolution. 

The probability of zero fixed differences is plotted 
as a  function of T in Figure 4. Also shown is the 
probability of zero  events under a Poisson distribution 
of parameter 2Tp.  Except for very low values of T,  
when all values are near  zero, and  for high values of 
T,  the Poisson distribution considerably underesti- 
mates the probability of zero  differences. This dis- 
crepancy is greater with higher  mutation  rates  and 
larger sample sizes. 

DISCUSSION 

The probability distribution  of  fixed  differences 
between samples was developed with two general 
goals. The first of these, which is shared with most 
quantitative  evolutionary  theory, was to  promote  an 
intuition  on the  part of investigators of how evolution 
might proceed under simplified conditions.  In this 
light, one of the  more  interesting  findings is the very 
low probability that  the genealogy of samples from 
the same population includes an exclusive clade of 
either sample. Also of interest,  and again in the case 
of samples from the same  population, is that the 
probability of m fixed differences, P(M = m), decreases 
monotonically with m, regardless of the sample size 
and mutation  rate. 

The second goal was to provide statistical tests with 
which to contrast  observations with the assumptions 
of the model. Some examples of tests, which apply to 
the case of two samples from  the same population, are 
described in RESULTS. For two reasons, that fixed 
differences are  not expected and  that if they do occur 
it is with a high variance, these tests will probably not 
prove very powerful for most questions. 

The distribution of fixed differences between sam- 
ples from isolated populations  does  not lead directly 
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to statistical tests, unless an estimate of T is provided. 
In addition,  the unlikely assumption was made  that 
both  populations and  the ancestral  population are all 
of the same size. This assumption  need not be made, 
as it would be  a simple modification to include scalers, 
perhaps U A  and US, which would be  the ratios  of the 
ancestral  population size to  the size of population A 
and B ,  respectively. These scalers would then  be mul- 
tiplied times the exponential  parameters  when consid- 
ering events within either population A or B.  For 
example, the time  between  sampling and  node nA - 1 
could be described by an  exponential  distribution 
having parameter uA(?). Thus  the results for samples 
from isolate populations can lead to statistical tests in 
cases where there exist prior estimates of time of 
isolation and relative  population sizes, or when  these 
quantities can be  estimated from  the  data. An example 
of a test that takes the  latter  approach is that of 
HUDSON, KREITMAN and ACUADE (1987), hereafter 
referred  to as HKA. 

The HKA test requires  data  on DNA sequence 
variation both  from within and between  two species, 
for each of two or more genetic loci. The population 
genetic  model is the same as in this report, with the 
additional  assumption that locus specific neutral  mu- 
tation  rates per chronological  time are constant across 
species. The test  proceeds by finding  the values for 
locus specific mutation  rates,  time since divergence, 
and relative population sizes that  are most consistent 
with the  data  and  the assumptions of the model. These 
then lead to  expected levels of sequence  variation 
within and between species for each locus. With  one 
degree of freedom  remaining, in the case of two loci, 
the contrast  between the observations and  the ex- 
pected values enables  a  test. 

The HKA test is useful as a  test of recent  natural 
selection having  acted within one of the species at  one 
of  the loci. If the  form of selection was balancing, 
such that two or more functional alleles had persisted 
in a species for a  long  period of time,  then  sequence 
variation within that species at  that locus is expected 
to be  elevated  relative to expectations (HUDSON and 
KAPLAN 1988; STROBECK 1983). If the  form of selec- 
tion was directional such that a  recently rare func- 
tional allele increased in frequency and became  fixed 
within one of the species, then  the hitchhiking  effect 
will cause sequence  variation within that species and 
locus to be reduced  relative to expectations (KAPLAN, 
HUDSON and LANGLEY 1989; MAYNARD SMITH and 
HAICH  1974). 

HUDSON, KREITMAN and AGUADE  (1987) used as a 
measure of divergence  between species, the diver- 
gence  observed between single randomly picked se- 
quences  from  each species. This  quantity is very tract- 
able in that  the expectation and variance under  the 
model is easily calculated. The quantity is not sensitive 

to  natural  selection,  however, because the divergence 
of single sequences  from isolated species is simply a 
function of time of divergence  and  not of genealogical 
processes within the species. An alternative  descriptor 
of species divergence is the  number of fixed  differ- 
ences as  described  in this report.  Recent hitchhiking 
at a locus in one species is synonymous with a  short 
genealogy for a sample of  sequences from  that species 
and locus. This means that the particular  sequence 
associated with the functional allele that is favored by 
natural selection will become  fixed in the population. 
Thus hitchhiking is expected  to increase  fixed  differ- 
ences between populations at  the expense  of  sequence 
variation within populations. Similarly, balancing se- 
lection will lengthen  the genealogy of samples that 
include  sequences  representing the  different  func- 
tional alleles. In this case, sequence  variation within 
species will be  increased at  the expense of fixed dif- 
ferences  between species. In  summary,  the expecta- 
tion and variance of the  number of fixed  differences 
between species could  be used in a  modified HKA 
test, and these modifications are expected  to  increase 
the power of the test to reveal natural selection. 

This work  was supported by National Science Foundation grant 
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