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USING PHYLOGENETIC TREES TO STUDY
SPECIATION AND EXTINCTION
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Abstract.—One tool in the study of the forces that determine species diversity is the null, or simple,
model. The fit of predictions to observations, good or bad, leads to a useful paradigm or to
knowledge of forces not accounted for, respectively. It is shown how simple models of speciation
and extinction lead directly to predictions of the structure of phylogenetic trees. These predictions
include both essential attributes of phylogenetic trees: lengths, in the form of internode distances;
and topology, in the form of internode links. These models also lead directly to statistical tests
which can be used to compare predictions with phylogenetic trees that are estimated from data.
Two different models and eight data sets are considered. A model without species extinction
consistently yielded predictions closer to observations than did a model that included extinction.
It is proposed that it may be useful to think of the diversification of recently formed monophyletic
groups as a random speciation process without extinction.
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The sciences of ecology and evolutionary
biology overlap in the study of the diversity
of species. Researchers inquiring of the con-
straints on diversity can suppose that spe-
ciation and extinction are affected by a great
variety of biotic and abiotic phenomena.
Posing questions about species diversity in
general would be impractical but for the tool
of null models. The statistical comparison
of observations with predictions from sim-
ple quantitative models can provide, in the
case of a good fit, a practical approximation
to reality; and, in the case of a poor fit,
insight to particularly strong deterministic
forces.

A common type of null model of taxo-
nomic diversity assumes equanimity among
lineages or taxonomic groups for speciation
and extinction rates (Raup, 1985). Within
this general class, models can take many
forms. For example, simulations of random
speciation and extinction have been used to
predict clade shapes that are similar to those
seen in the fossil record (Gould et al., 1977,
Gilinsky and Good, 1989; Raup etal., 1973).
In contrast, Dial and Marzluff (1989) ad-
dressed the observation of a hollow curve
distribution of the number of taxonomic
subunits (e.g., genera) within taxonomic
units (e.g., families) that is found in a variety
of extant vertebrates. They examined five
null models and rejected all.

This report describes two very simple null
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models and shows how they lead to predic-
tions about the structure of phylogenetic
trees. These predictions concern both the
lengths of trees and their topology, but in
ways not typical of most phylogenetic anal-
yses. Rather, these models have more in
common with recent population genetic re-
search of neutral models of gene genealogies
(for reviews see Ewens, 1990; Hudson,
1990), in which all individuals are equally
likely to pass on their genes. Similarly the
models considered here can be considered
as neutral speciation models, in which all
species are equally likely to undergo speci-
ation. Most important is that these models
lead directly to simple goodness-of-fit tests
which can be applied to empirical data. This
report concludes with the results of good-
ness-of-fit tests on eight data sets.

Theory

Two Models of Diversification. — Consider
the simple Markov process described by
Yule (1924). In this model (model G for
growth) there is no extinction, and for every
point in time, all species are equally likely
to undergo speciation. The time to specia-
tion for each species follows an exponential
probability distribution so that the rate of
speciation, a, is the parameter of the ex-
ponential distribution. Put another way, the
probability that the time until speciation is
t is given by
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Fic. 1. A phylogenetic tree for five species. Node
numbers and internode distances are indicated.

P(t) = ae . (1)

The exponential distribution has the
Markov property whereby the distribution
of the time of future events does not depend
on the time of prior events. Thus the prob-
ability that the next speciation event occurs
at time ¢ is completely independent of the
time since the last speciation event. It can
also be shown that when there are N species,
the overall speciation rate is Na and the
probability distribution of the time until any
one of the species undergoes speciation fol-
lows an exponential distribution with pa-
rameter Na.

Consider a monophyletic group of N ex-
tant species (i.e., N includes all of the extant
species that have descended from an ances-
tral species). Figure 1 shows an example of
a phylogenetic tree with both the nodes and
the internode distances ordered in time. The
nodes represent speciation events and the
internode distances represent the time that
has passed between successive speciation
events. In general, a tree for N species will
have N — 1 nodes and N — 2 internode
distances. If nodes are ordered as in Figure
1, then i + 1 lineages extend between node
iand nodei + 1, where 1l =i =< N — 1.
The internode distance between node i and
node i + 1 will be referred to with the vari-
able x; (Fig. 1). Since the internode distances
are equivalent to the times between succes-
sive speciation events, these may be com-
pared with predictions from model G.
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Under model G, each of the N — 2 in-
ternode distances is a random variable. The
N — 2 exponential distributions all share
the parameter a but differ in the multiplier
of a. Thus, under the model, the time be-
tween node [ and node i + 1 is described
by an exponential distribution having pa-
rameter (i + 1)a.

To compare the predictions of model G
with actual phylogenetic trees, a method is
required to calculate a value for a that is
consistent with observations. One approach
is to generate a maximum likelihood esti-
mate of a using internode distances from an
actual phylogenetic tree. This approach re-
quires a likelihood function, representing the
overall likelihood of a set of observed in-
ternode distances, assuming that model G
is correct. Since, under the model, each of
the internode distances is an independent
random variable, the likelihood function is
the product of multiple exponential terms.
The likelihood function for a set of inter-
node distances from a tree of NV species is

L(a) = P(x, X3, . - ., Xn_2; Q)
ae—%-2qe%%- |

. (N — 2)‘1—(N—2)ax,‘,_2

av-2AN — 2le 2R ()

The maximum likelihood estimate of the
speciation rate, 4, follows directly:

N-2
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Like most maximum likelihood estimators,
expression (3) is biased. An unbiased esti-
mate can be obtained by using

. N-3

Gy =y )

N—-2 .
> G+ Dx,
=1

This quantity differs very little from ex-
pression (3) unless N is small.

Model G can be modified to include ex-
tinction by drawing on recent population
genetic theory. Coalescent models (King-
man, 1982a, 1982b; Tajima, 1983; Tavare,
1984) in population genetics begin with a
model of a population persisting via some
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demographic process that proceeds forward
in time, for example a Wright-Fisher model
(Fisher, 1930; Wright, 1931), and then pro-
ceed to consider the history of a sample of
genes from that population as a genealogical
process that extends into the past. Similarly,
we may consider a group of species that
persist via some process of speciation and
extinction, and then we may consider the
history of a sample of extant species. The
structure of the history depends on the mod-
el of diversification. As time moves for-
ward, the relevant events are speciation and
extinction. Looking backwards through time
with a phylogenetic tree, the relevant events
are nodes of common ancestry, indicating
some subset of the speciation events.

Let the time until speciation for each of
N species follow an exponential distribution
with parameter B. Suppose that whenever
any one of the species undergoes speciation,
one of the others goes extinct. Thus N is
constant over time and the time between
any successive pair of speciation/extinction
events is exponential with parameter NB.
We will refer to this model as model C (for
constant). Unlike model G, in which the
nodes of the phylogenetic tree describe all
speciation events, the nodes of the phylo-
genetic tree for a group of extant species
under model C will correspond to only a
subset of speciation/extinction events. Only
those speciation/extinction events for which
both lineages appear in the sample will be
represented as nodes in the phylogenetic tree.
For example, if one or both of the lineages
that arise from a single lineage at the time
of speciation subsequently go extinct, then
that speciation event cannot be represented
in the phylogenetic tree of extant species. In
the case of model G, the time between spe-
ciation events corresponds to-internode dis-
tance on the phylogenetic tree. In model C,
because of extinction, the time between spe-
ciation/extinction events does not directly
correspond to internode distance.

The distribution of internode distances
can be obtained from the distribution of
times between speciation/extinction events.
Consider the history of a monophyletic
group of N extant species, and let the most
recent speciation/extinction event be de-
noted as event one, the second most recent
event as event two and so on into the past.
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For the moment permit the assumption that
the time at which species are sampled (i.e.,
the present) coincides with a speciation/ex-
tinction event. This assumption ensures that
the time between the present and event one
also follows an exponential distribution with
parameter NB. Then the probability distri-
bution of the time between the present and
event j, T, is the distribution of the sum of
j identically distributed exponential vari-
ables. The distribution of the sum can be
found via convolution of the component
distributions, which in this case yields the
gamma distribution

(NBt;y—!
G-o @

Now consider a phylogenetic tree for a
random sample of n extant species that are
taken from the group of N species, where n
=< N (model C is more general than model
G, wherein the latter requires that the sam-
ple of species be an entire monophyletic
group while the former does not). As in
model G, the tree has n — 1 nodes indexed
so that i + 1 lineages extend between node
i and node i + 1. Note that the index of
speciation/extinction events, j, increases
for events further in the past while the index
of nodes, i, decreases for events further in
the past. Let M, represent the speciation/
extinction event that is associated with node
i. Let P(M; = j) be the probability that node
i corresponds to speciation/extinction event
j.If n =N, then P(M,_, = 1) = 1. This is
because the two species from the most re-
cent speciation/extinction event must be in-
cluded in the sample when N = n. For n <
N, calculation of P(M,,_, = 1) follows from
the consideration that in order for node »
— 1 to coincide with the most recent spe-
ciation/extinction event, the pair of species
created at that speciation/extinction event
must be included in the random sample of
n species. The probability of this is the hy-
pergeometric probability

(o3)
n—2 _n(n—1)

(ﬁ NN - 1)

n

P(T; = t) = NBe~%

Q)

More generally, the probablity, v,, that i +
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1 species include a pair that had a most
recent common ancestor at the most recent
node (i.e., node i) can be represented by

(60 25)
. (+D-2) it o

N NN - 1)
<i+ 1)

It follows that P(M,,_, =2)= (1 — v,,_ )Vn_s
and, in general, the relationship between
speciation/extinction events and phylogeny
nodes is described by a geometric distri-
bution:

P(Mnfl =J) = (1 - ’Ynfl)j7l Yn—1- (8)

Let P(x,_,) be the probability that the
interval between T, and node n — 1 has
length x,_,. Then

P(x, )= PM, = )HP(T,=x,_))

J=1

=20 =%, 'y,.,NB
J=1

e—NBx,,,,
J-r_
x (VBx, )™

= NBr,_ e VBr-ix, )

Evidently the probability density is an ex-
ponential distribution with parameter
NB~,_,, and thus the process of proceeding
backwards in time to successive nodes is
Markovian. The reasoning that led to ex-
pression (9) can be repeated beginning at
node n — 1 instead of T|,. Regardless of the
time between T, and node » — 1, the time
between node n — 1 and node n — 2 will
follow an exponential distribution having
parameter NBv,_,. In general, we can treat
the time interval between nodes i and i +
1 as if beginning with a random sample of
i + 1 species. Actually the time between T,
and node n — 1 should not be used unless
T, coincides with a speciation/extinction
event. However, for node i, where 1 < <
n — 2, the probability density is exponential
with parameter NBv,.

Ifwelet b= B/(N — 1)and A\, = i(i + 1)
then NB~, = b\A,. Thus the parameter for the
probability density of x; is seen to consist
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of two components; b is a parameter of the
species group and A, is determined by the
sample size.

As with 4 for model G, the maximum
likelihood estimate of b can be calculated
from a set of observed internode distances:

A -2
b=

> \x,
=1

Expression (10) is nearly identical to ex-
pression (2). Also, as for 4, an unbiased es-
timate of b can be obtained using

(10)

n—3
n—2
2 )\ixl
i=1

Although model C includes extinction and
model G does not, the two models fit a com-
mon mathematical framework. In both
models, the steps of a simple Markov chain
can be used to model the times between
nodes of a phylogenetic tree. For different
reasons, neither model requires estimating
the total number of species. In model G, all
species are included in the sample, so that
the number of species is known. In model
C, the total number of species need not be
known because it is a component of the pa-
rameter b. This has the advantage of per-
mitting the use of a random sample of spe-
cies, but has the disadvantage that unless
the total number of species is known, the
speciation rate, B, cannot be estimated.

For identical speciation rates and the same
number of species the two models predict
similar distances for recent nodes. In Figure
2 the expected internode distances are plot-
ted under both models for N = 20 and a =
B = 1. At earlier times the predictions of
the two models become increasingly differ-
ent. In general, the discrepancy between
models with extinction versus those without
will be greater for events further in the past.
The sample is necessarily restricted to lin-
eages that did not go extinct, and as the
number of sampled lineages is increasingly
small further in the past, the internode dis-
tances are lengthened by events involving
lineages not included in the sample.

Model C differs from a more general
model in which speciation and extinction

b, = (11)
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FiG. 2. The natural logarithms of expected internode distances for models G and C are compared. Each case
begins with a sample of 20 species. The speciation rate per species was set at 1 for both models (i.e., a = B =
1). Because the expected value of an exponential distribution is always the inverse of the parameter of that
distribution, the expected distance between nodes i and i + 1 for model G is equal to 1/( + 1). Similarly, for
model C the expected distance between nodes i and i + 1 is equal to 1/(\,/19).

are independent random events (Raup,
1985). In the more general model the times
between events (whether speciation or ex-
tinction) can be modeled as a birth and death
Markov chain. However, this model does
not lead to predictions of internode dis-
tances as simply as does model C. It is an-
ticipated that were speciation and extinc-
tion modeled as independent events, the
expectation for internode distances would
be similar to that for model C in Figure 2.
This is because the same reasoning on in-
creasing internode distances because of ex-
tinction applies to both models. However,
the actual distribution of internode dis-
tances under the more general model may
be very different from model C.

Models G and C are readily compared
with simulations. To simulate a data set, all
that is required is a set of random numbers
drawn from exponential distributions. For
model G a simulated value for the distance
between node i and node i + 1 requires a
random number drawn from an exponential
distribution having parameter ({ + 1)a. The
distance for the same node under model C
is created by drawing from an exponential
distribution having parameter bA,. Figures
3A and 3B show the results of single

simulations of internode distances, under
models G and C, respectively. For both sets
of distances d and b were calculated, and
these were used to plot the expected values
assuming models G and C, respectively.
Knowing that model C predicts a steeper
curve (Fig. 2) we expect the lines of best fit
to cross, when both models are applied to
a data set (simulated or real). In Figure 3
the lines of best fit cross as expected, and
model G appears to fit best in Figure 3A
while model C appears to fit best in Figure
3B.

The maximum likelihood approach to
parameter estimation, used in both models,
leads readily to goodness-of-fit tests. The
goodness-of-fit of predictions to observa-
tions can be described with a likelihood ra-
tio statistic. Under model G, for a particular
internode distance, x,, the maximum like-
lihood estimate of a, d,, is 1/(ix,). The like-
lihood ratio statistic for model G is the ratio
of the likelihood using 4 to the likelihood

using d,:
N—-2
I I die— 4

Lg= (12)

2.
of =

d,ie“i'”"

=1
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FiG. 3. The natural logarithms of simulated inter-
node distances for phylogenetic trees of 20 species.
Simulated distances are plotted with the best fit values
assuming models G and C. A shows the results of a
model G simulation. The value for the distance be-
tween nodes i and { + 1 was randomly drawn from an
exponential distribution with parameter (i + 1) (i.e., a
= 1). The maximum likelihood estimate of the param-
eter assuming models G and C were 4 = 1.91 (A =
14.0) and b = 0.19 (Ac = 22.4), respectively. B shows
the results of a model C simulation. The value for the
distance between nodes i and i + 1 was randomly
drawn from an exponential distribution with param-
eter A, (i.e., b = 1). The maximum likelihood estimate
of the parameter assuming models G and C were 4 =
6.41 (Ag =22.4)and b= 0.88 (A- = 19.2), respectively.
For both A and B, the best fit values of the distance
between nodes i and i + 1 were equal to 1/[4(i + 1)],
under model G, and equal to 1/(b\,), under model C.

In practice, it is convenient to use
Ag = —21In(Ly)

n—2

—2[(;1 - 2)In@) + 2, ln(ix,)}. (13)

A direct way to test whether or not an
observed value for Ag is greater than ex-
pected under a neutral model is to calculate
a from the data, and to compare the cor-
responding value of Ag with the results of
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simulations. Simulated data for a set of N
species can be created by drawing a single
random number from each of N — 2 ex-
ponential distributions. The distance for
node i is drawn from an exponential distri-
bution having parameter d(i + 1). For each
simulation (i.e., each set of N — 2 random
numbers) 4 and Ag are calculated. After
many simulations, the values of Ag are
ranked, and the location of the observed
value of Ag within the simulated distribu-
tion is found. The values of 4 generated by
the simulations can be used to generate a
variance and 95% confidence limits for the
observed 4. In the course of simulations, it
was found that A;/1.17 has a distribution
nearly identical to the x? distribution with
N — 3 degrees of freedom. This means that
the x?y_; distribution can be used for sig-
nificance testing.

For model C, the analogous expression
for A is identical to expression (13) except
that b replaces d and A, replaces i. The
procedure for testing the fit of model C fol-
lows that for model G exactly, including the
use of the x2,_5 distribution.

For the simulations in Figure 3, values of
Ag and A are given. The relative values of
the likelihood ratios fit the expectation that
the fit of model G is better than the fit of
model C to a simulation of model G. Sim-
ilarly model C fits the model C simulation
better. The simulation in Figure 3 was picked
for this reason. This pattern is expected for
the majority, but not all, simulations.
Sometimes a model G simulation will look
more like an example of model C, and vice
versa.

Topology Theory.—If all species in a
monophyletic group are equally likely to un-
dergo speciation, it is appropriate to view
the particular species that does undergo spe-
ciation as a random selection from the group.
One way to examine departures from ran-
domness is to consider that at any point in
time the species of a monophyletic group
may be divided into two groups: those two
species that arose from the last speciation
event; and all others. Under both models G
and C, the two species that arise from one
speciation event should be no more or less
likely to undergo the next speciation event
than are other species in the group. Simply
by examining a phylogenetic tree, one can
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determine, for each node, whether the lin-
eage that underwent speciation had arisen
from the previous node. Since one of the
two species that arise from node 1 must be
involved in node 2, only the N — 3 inter-
nodes between nodes 2 and N — 1 can be
included in a test for departure from ran-
domness.

The probability that one of the two spe-
cies arising from the speciation event at node
I connects to node i + 1 is 2/(i + 1). Note
that this quantity decreases for increasing
node numbers. The probability that one of
these two species does not connect is 1 —
2/(i + 1)= (@ — 1)/({ + 1). Thus, except for
links from nodes 2 to 3 and from nodes 3
to 4, a new species to new species link is
always less likely than the alternative.

We may describe the pattern between
node 2 and node N — 1 of a phylogenetic
tree (hereafter referred to as a Links pattern)
as a series of 1’s and 0’s, with 1’s repre-
senting cases where successive speciation
events are linked. For example, consider the
tree of five species in Figure 1. For nodes 2
and 3 the Links patterns is 1-0, meaning
that for node 2, but not node 3, one of the
new species was connected to the next node.
Since, under models G and C, the linkages
between successive nodes are independent
of each other, the likelihood of an entire
Links pattern (hereafter referred to as a Links
likelihood) is the product of the likelihoods
of the observations at individual nodes. For
the tree in Figure 1 the likelihood is (2/3)-
(2/4) = 1/3. To formalize this calculation
let /; be the value in the Links pattern at
position j (i.e., corresponding to node j +
1 in the phylogenetic tree). Then let

2

f(lj)=j+—2, for lj= 1, (14)
and
__J _
SO =5, forh=0. (5

The Links likelihood can be expressed as

H fa).

There are two patterns of nonrandomness
to which a Links test should be sensitive:

(16)
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the case where new species are more likely
than others to undergo speciation; and the
case where new species are less likely to un-
dergo speciation. For most nodes a “1” in
a Links pattern has a likelihood less than or
equal to 0.5 while a ““0” has a likelihood
greater than or equal to 0.5 (the exception
is node 2). Thus a tree with many 1’s will
have a low likelihood and a tree with many
0’s will have a high likelihood. The Links
likelihood can be used as a test statistic be-
cause both low and high values correspond
to circumstances to which a test should be
sensitive. The Links likelihood is imperfect
because: of node 2, at which a new species
to new species link has a likelihood of 2/3.
This means a Links pattern with a “1”’ for
node 2 will have a higher likelihood than
the same pattern with a “0”’ for node 2. Thus
the Links likelihood is a better test statistic
when trees are large and node 2 contributes
relatively little.

A test of the departure of a Links pattern
from randomness is made by contrasting
the observed value for the Links likelihood
with the distribution of possible values. Be-
cause each of the N — 3 links could be a
“1” or a “0,” there are 2%~ distinct pos-
sible Links patterns. A test is made by cal-
culating a Links likelihood for each possible
pattern, and summing those that are equal
to or less than that for the actual observa-
tion. A summed likelihood of P < 0.05
(0.025 in two tailed test) would indicate that
the probability of getting an equally or more
extreme pattern was only 0.05, suggesting
new species undergo speciation more than
is expected. A summed likelihood of P =
0.95 (0.975 in a two tailed test) would sug-
gest that new species undergo speciation less
than is expected. When N is large, P can be
calculated from a random sample of the
possible observations. The Links test is more
sensitive to excessive new species to new
species links. A comblike tree (i.e., an ob-
servation of all 1’s) is not statistically sig-
nificant unless there are nine or more spe-
cies (i.e., six or more 1’s), while an
observation of all 0’s is not statistically sig-
nificant unless there are twenty-one or more
species.

The Links test is just one of many ways
in which topologies could be examined for
randomness. For example, Slowinski and
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Gruyer (1989) describe a test for imbalance
between the sizes of sister groups that ex-
tend from the basal node of a tree. This test
is intended for cases where one or both sister
groups is large.

Testing Models

If the estimate of a phylogenetic tree is
not biased with respect to the models, then
we can use estimated trees for goodness-of-
fit tests. However, even if they are unbiased,
estimated trees will have an extra source of
variance (i.e., the departure of estimated
trees from true trees) not accounted for by
models G and C. This means that we can
expect to find a poor fit of estimated trees,
even when true trees may be consistent with
one of the models, more often than indi-
cated by the chosen significance level.

As they are described in the section on
Theory, models G and C can be used to
generate predictions of the times between
nodes. However, most estimated phyloge-
nies contain branch lengths in units of
change of the characters used to construct
the tree. These measures of branch lengths
can be converted to internode distances only
if they are directly proportional to time. The
effect, of using distances that are propor-
tional to time rather than equal to time, is
that the x, values are in units of character
change rather than in units of time.

The remainder of the analysis employs
the assumption that for the characters used
in the construction of a phylogenetic tree,
species divergence proceeds without ho-
moplasy and at a constant rate (i.e., in a
clocklike fashion). If this assumption is not
made, then application of models G and C
to actual data becomes much more difficult.
In essence, without the clock assumption,
an estimated phylogenetic tree cannot in-
form on the time between nodes. While there
may be circumstances in which data on
variation in evolutionary rates can be used
in conjunction with estimated phylogenies,
this approach has not been pursued here.
Rather, the clock assumption is made, and
analysis is restricted to those data sets that
seem most consistent with it (see below).

Studies that compared methods of phy-
logeny estimation under the assumption of
clocklike divergence, and across trees of wide
ranging topologies and branch lengths, have
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found that the UPGMA (Sneath and Sokal,
1973) clustering method generally per-
formed as good as and often better than
parsimony and maximum-likelihood meth-
ods (Rohlf and Wooten, 1988; Rohlf et al.,
1990). The UPGMA method was selected
for this reason as well as for ease of calcu-
lation and applicability to a wide variety of
data sets. The NTSYS (Rohlf, 1985) pack-
age of programs was used for generating
UPGMA trees and cophenetic correlations.

Each of the data sets examined satisfied
three criteria: the species formed a mono-
phyletic group, in the sense that all extant
species of a clade are included; the distance
data were consistent with clocklike diver-
gence; and sufficient data were presented to
distinguish all species of the group (i.e., data
sets were excluded if zero divergence was
reported between some species). A mono-
phyletic group is required for testing model
G. Model C requires either a monophyletic
group or a random sample from a mono-
phyletic group. Tests were restricted to mo-
lecular (i.e., RFLP, DNA-DNA hybridiza-
tion, and protein electrophoresis). These
types of data are often consistent with a
model of a constant rate of change (Caccone
and Powell, 1987; Caccone et al., 1988; Eas-
teal, 1988a, 1990).

Molecular data may underestimate branch
lengths for early nodes if nucleotide sites
become saturated with mutations over time.
For RFLP data and DNA-DNA hybridiza-
tion data, this bias is expected to be slight
for the low levels of divergence reported in
the data sets used here. For allelic (e.g., pro-
tein electrophoresis) data, however, satu-
ration can be a major concern. With two
exceptions, this type of data was not used.
The Ursus (Goldman et al., 1989) data in-
cludes both allozyme and two-dimensional
electrophoresis data and genetic distances
are low. The Plethodon (Highton and Lar-
son, 1979) data set has some high genetic
distances, but the authors provide addition-
al data showing that their estimates of ge-
netic distance, based on allozyme compar-
isons, are linearly correlated with DNA-
DNA hybridization data, even for high lev-
els of genetic distance.

An extensive literature search yielded ex-
actly eight studies that satisfied the criteria.
In each of these cases monophyly was as-
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sumed if all extant species of a taxon are
included in the study. It cannot be ruled out
that in some cases not all extant species are
recognized or that a taxon is actually para-
phyletic. In the case of sect. Peripetasma of
the genus Clarkia a member of a different
monotypic genus, Heteroguara, that had
been included in the study, actually clus-
tered within Peripetasma (Sytsma and Gott-
lieb, 1986). Thus sect. Peripetasma appears
to be paraphyletic. For this analysis Het-
eroguara was included within Peripetasma.

If divergence were strictly clocklike, then
a matrix of all pairwise distances between
N species would contain only N — 1 distinct
values, corresponding to the times of the N
— 1 nodes. In this case the cophenetic cor-
relation, the correlation between the actual
pairwise distances and those generated us-
ing the distances in the UPGMA tree, would
be equal to one. The cophenetic correlations
for the data sets are listed in Table 1. All
values are above 0.877. Interestingly, the
values for DNA-DNA hybridization studies
are all higher than those for the RFLP stud-
ies which are in turn higher than those for
the protein studies. Some authors addressed
the issue of an evolutionary clock in their
data (sect. Peripetasma: Sytsma and Gott-
lieb, 1986, tribe Hadenoecini: Caccone and
Powell, 1987; subgroup melanogaster: Cac-
cone et al., 1988a; genus Ursus: Goldman
et al., 1989; family Gruidae: Krajewski,
1990). With the exception of a departure
from rate constancy in one lineage of the
Gruidae (Krajewski, 1990), clocklike diver-
gence could not be rejected in these studies.

Table 1 reveals that in no case can either
model G or model C be rejected on the basis
of goodness-of-fit to the data. In all eight
cases, model C fits worse (i.e., has a higher
value for A) than does model G. The con-
sistently poorer fit of model C suggests that
if the results of the eight tests are taken to-
gether model C may be rejected. However,
the result of Fisher’s (1954) test of com-
bined probabilities yields a test statistic of
20.61, which is not significant (from x2,, P
= 0.194). Thus neither model can be re-
jected outright. The actual and predicted
internode distances are plotted in Figure 4.

Despite the results from the goodness-of-
fit tests, there remains a sense in which the
consistently worse fit of model C is unlikely.
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Consider the null hypothesis that for any
particular data set there is a fifty-fifty chance
that model C fits better than model G. Un-
der this hypothesis the probability of the
outcome, in which for all eight cases one
model fit worse than the other, is small (0.53
=0.004). Thus taken together, the eight data
sets show that model C yields a poorer fit
more often than does model G. The Links
tests reveal no significant deviations from
random expectations (Table 2). In light of
the finding that model G consistently fits
better than does model C, the Links test is
expected to be more useful. Any underlying
pattern of increased or decreased likelihood
on the part of new species to undergo spe-
ciation will be obscured to the extent that
extinction of some species occurs.

Speciation Rates

The units of measure of the RFLP and
DNA-DNA hybridization data sets are
comparable. In the RFLP studies, distance
was expressed as the percentage of sequence
divergence (Nei and Li, 1979). The hybrid-
ization studies all use AT, for which a value
of 1° has been equated with 1.7% sequence
divergence (Caccone et al., 19885). The av-
erage of d for these six data sets (with those
values for the DNA-DNA hybridization
studies adjusted by 1.7) is 0.66. In other
words the average estimated rate of speci-
ation is 0.66 speciation events per 1% se-
quence divergence. Put another way, the in-
verse indicates that approximately 1.5%
sequence divergence occurs between speci-
ation events. If substitutions accumulate at
5-107? per site per year, then these numbers
correspond to a speciation rate of one event
per three million years, on average. These
values should not be considered as esti-
mates of global parameters, since the wide
ranging and sometimes nonoverlapping 95%
confidence limits indicate significant vari-
ation for a.

The same analysis applied to model C
reveals an average value of b of 0.14. Recall
that b = B/(N — 1). Since this study was
limited to complete monophyletic groups,
the values for N can be used to convert es-
timates of b to estimates of B. These cal-
culations reveal an average speciation rate
of 1.23 events per 1% divergence. Thus
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TABLE 2. Links tests.

Data sets Links pattern Likelihood P
subgroup melanogaster 10001 0.0381 0.49
tribe Hadenoecini 000001 0.0119 0.26
family Gruidae 11000010001 0.0013 0.36
genus Equus 111 0.1333 —
sect. Peripetasma 100100 0.0357 0.76
subgroup nasuta 1111010 0.0062 0.22
genus Ursus 110 0.2000 -
genus Plethodon 000010000010 2.308-10-5 0.40

00000000100

* P is the probability of getting an observation with a likelihood equal to or less than the observation. This probability was not calculated for the
smallest data sets, for which the Links likelihood is not a good test statistic (see text).

model C indicates an average speciation rate
about twice that of model G.

DiscussioN

Estimated phylogenetic trees are gener-
ally used for inferring historical patterns of
common ancestry and to a lesser extent es-
timating the time of speciation events. It is
shown here how estimated phylogenetic
trees can be used to study processes of di-
versification. As is common with historical
inference, information comes in the form of
contrasts between observations and null
predictions.

The consistently good fit of model G and
the apparent randomness of the Links pat-
terns suggest that it is useful to think of the
diversification of species as a random pro-
cess of speciation without extinction. In the
face of evidence of extinction, this model is
clearly untenable for many groups of organ-
isms. The discrepancy, that model G fits
well in this analysis but cannot be generally
true, may be reconciled if we consider that
the eight monophyletic groups studied are
not typical. Two criteria of this analysis fa-
vored small recently formed monophyletic
groups. First, the analysis was limited to
studies of complete monophyletic groups
and more such studies exist for small groups
than for large ones. Second, the characters
used by the different studies (protein elec-
trophoretic mobility and DNA sequences)
evolve quickly and are less applicable for
older groups. With the exception of the study
of sect. Peripetasma (Sytsma and Gottlieb,
1986) all of the studies calculated or re-
ported rough estimates of the age of their
respective groups. For the genus Plethodon

this time was 40 million years (Highton and
Larson, 1979); for the family Gruidae (Kra-
jewski, 1990) the time was 23 million years;
and the others were all less than 10 million
years. In sum, a model that excludes ex-
tinction cannot be generally true, but it may
be true of small groups of recent origin. If
this is true, it must follow that extinction is
a more likely event (per unit time) for older
lineages.

Models G and C are minimal in their as-
sumptions. This quality is desirable in null
models for two reasons. The first is that
predictions are more easily grasped in a cog-
nitive sense. Thus, in Model G, the longer
internode distances that arise when there
are fewer species can be understood as a
waiting time problem (i.e., waiting for any
one of few events takes longer on average
than does waiting for any one of many
events). The second reason is that when
simple models fail it is often possible to
pinpoint which of the properties of the mod-
el are inaccurate.

Models G and C lead to simple statistical
tests. Expressions (3), (10), and (13) are eas-
ily calculated, and the Links test requires a
short computer program (computer pro-
grams for the Links test and the goodness-
of-fit simulations can be obtained by a
request to the author). The power of the
statistical tests is necessarily low for small
samples, and, because all species of a taxon
are required, this is an important limitation
of these tests for some groups of organisms.
As the number of data sets involving entire
monophyletic groups increases, these tests
will become more useful.

It must be stressed that models G and C
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provide predictions about time. These
models can be applied to data in units of
change only if change is directly propor-
tional to time. It follows that these models
should not be applied to data not consistent
with clocklike divergence. In the case of
clocklike divergence, it is simply a fortunate
convenience that the scaler of proportion-
ality need not be known and does not enter
into the statistical tests. Although UPGMA
was used here, any of a variety of phylo-
genetic estimation procedures could be used,
so long as they return values interpretable
as internode distances proportional to time.
By far the most appropriate data would be
from monophyletic groups with fairly ac-
curate estimates of the actual times of di-
vergence.
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