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ABSTRACT 
Population  genetic  models  often use a population  recombination  parameter 4Nc, where N is the 

effective population size and cis the  recombination  rate  per  generation.  In many ways 4Nc is comparable 
to 4Nu, the  population  mutation  rate. Both  combine  genome  level  and  population  level  processes,  and 
together they  describe  the  rate  of  production of genetic  variation in a population. However, 4Nc is more 
difficult  to  estimate.  For a population  sample of DNA sequences,  historical  recombination  can  only  be 
detected if polymorphisms  exist,  and  even  then most recombination  events  are  not  detectable.  This 
paper describes  an  estimator of 4Nc, hereafter  designated y (gamma), that was developed using a 
coalescent  model  for a sample of four DNA sequences  with  recombination.  The  reliability of y was 
assessed  using  multiple  coalescent  simulations.  In  general y has  low to moderate  bias,  and  the  reliability 
of is comparable,  though  less,  than  that for a widely  used  estimator  of 4Nu. If there exists  an indepen- 
dent estimate of the  recombination  rate (per generation,  per base pair), y can be  used to estimate  the 
effective population size or the  neutral  mutation  rate. 

A T  the level  of an individual DNA base pair, the 
source of  all genetic variation is the process of 

mutation. However, at  the level  of a  larger genotype 
such as the DNA sequence of a  gene or of the  genome 
of an organism,  recombination is also a cause of genetic 
variation. Together these genome level processes, in 
conjunction with population level processes like genetic 
drift and natural selection, determine levels and pat- 
terns of genetic variation in natural  populations. 

In many population  genetic models the  conjunction 
of genome level and population level processes is com- 
plete, and  the  central  parameter of the  model is the 
product of a  genome level (e .g . ,  mutation) rate and 
population level (e .g . ,  genetic drift) rate. One of the 
best examples is the  neutral  model  prediction of the 
level of heterozygosity in  a  natural  population.  Under 
the simplifying assumptions of the  neutral infinite-site 
model,  the probability that  a  particular  nucleotide site 
will be heterozygous in an individual from a diploid 
population is 4Nu ( KIMURA 1969), where Nis  the effec- 
tive population size, and u is the  neutral  mutation  rate 
per base pair  per  generation. This particular  parametric 
quantity ( i.e., 4Nu)  appears regularly in  population ge- 
netic models and is usually referred  to as 0 ( WATTERSON 
1975; EWENS 1979). Similarly, the  rate  at which  varia- 
tion is generated by recombination is expected to de- 
pend  on  both  Nand c, where cis the  rate of recombina- 
tion per generation  per base pair. For example, 
GRIFFITHS (1981 ) showed, under a two locus infinite- 
site model,  that  the covariance of the  number of segre- 
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gating sites at two loci is a  function of both 0 and 4Nc. 
Hereafter, Cwill refer to 4Nc. 

While there exist several ways to estimate 0 from com- 
parative DNA sequence  data (TAJIMA 1993; KUHNER et 
al. 1995) , estimation of C is more difficult. In  general, 
detection of recombination events in the history of a 
sample of DNA sequences depends  on  the  amount of 
variation in the  sample, and most recombination events 
are  not  detectable (HUDSON  and KAFTAN 1985) . HUD- 
SON developed an estimator of C that is based on the 
variance of the  number of base pair differences between 
DNA sequences (HUDSON  1987). However, HUDSON’S 
estimator has low reliability if data sets are  not very 
large (HUDSON  1987). In this report we describe a new 
estimator of C that works  well over a wide range of 
sample sizes. 

THEORY 

Consider  four DNA sequences drawn randomly from 
a  population of constant effective population size. As- 
sume  that all mutations, and thus all polymorphisms 
among  the  four sequences, are  neutral. In the time 
since the  common ancestral sequences of all four se- 
quences,  there may  have been many mutation and re- 
combination events. We assume that  the  recombination 
and mutation rates are sufficiently low so that we can 
overlook the  occurrence of multiple events ( i e . ,  more 
than one recombination event between adjacent base 
pairs or more  than  one  mutation event at a base  posi- 
tion) in  the time since the  common ancestors. 

There  are  three possible unrooted topological struc- 
tures for  the genealogy of four DNA sequences  at  a 
particular DNA base position site (Figure 1 ) . Each to- 
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Sequence # Base 
1 C 
2 C 
3 T 
4 T 

1 C 
2 T 
3 C 

3 l-1 4 T 

FIGURE 1.-Drawings of all three possible  unrooted  topolo- 
gies for  four items. The  effect of internal  branch  mutations 
are  shown  as three  different base patterns  among the se- 
quences. 

pology can be distinguished by the particular pairs of 
sequences that  are joined by the  internal  branch. A site 
becomes “informative” only if a  mutation has occurred 
on  the internal  branch of that site’s genealogy. A muta- 
tion on  the internal  branch will necessarily cause two 
of the sequences to show one nucleotide and  the  other 
two sequences to show a  different  nucleotide at  the site 
of the  mutation. Figure 1 shows  how each topology, in 
conjunction with a  mutation  on  the  internal  branch, 
corresponds to just  one of three possible informative 
patterns. 

When a pair of nucleotide sites is considered in a 
sample of four  sequences, and  there has not  been re- 
combination in the time since common ancestry, then 
both sites will have the same genealogical topology 
(“congruent” genealogies) . If both sites are informa- 
tive, then  both will have the same pattern of  base  values 
(Figure 1 ) . If recombination has occurred between the 
two sites in their history since the time of ancestral 
sequences,  then it is possible for  the two sites to have 
different genealogical topologies ( “incongruent” ge- 
nealogies). For the  recombination to be detectable, 
it is necessary that  both sites  also be informative. If 
recombination has occurred and both sites are informa- 
tive, then  the two sites may reveal two  of the  patterns 
shown in Figure 1. This criterion  for  the  detection of 
recombination has been called the “four-gamete” test 
(HUDSON and KAPLAN 1985) . 

Our goal is to develop a mathematical expression for 
the probability that  a  pair of informative sites, in  a sam- 
ple of  four sequences, have congruent genealogies. The 
first step is to derive three quantities: L2, Zl, and Io. I, is 
the probability that two adjacent sites  have incongruent 
genealogies given that they are  both informative. 1, is 
the probability that two adjacent sites  have incongruent 
genealogies given that one of the sites is informative 

and that  the other is not. Io is the probability that two 
adjacent sites  have incongruent genealogies given that 
neither of them is informative. Although I, has been 
defined for adjacent sites, it is shown  below  how I, and 
IO can be used to generate an expression for L2,n which 
is the probability that two sites separated by n interven- 
ing sites  have incongruent genealogies given that they 
are  both informative (and that  none of the intervening 
sites are  informative). 

Let the  population  recombination  rate between two 
adjacent sites  be C = 4Nc, where Nis  the effective popu- 
lation size and c is the  recombination  rate  per gamete 
per  generation between the two sites.  Likewise, let the 
population  mutation  rate at each site be Q = 4Nu, where 
u is the mutation rate per site per  gamete  per  genera- 
tion. The strategy in deriving I, is to calculate two proba- 
bilities: 

P(  Genealogies Incongruent 

and Both Sites Informative) ( 1 ) 

and 

P( Both Sites Informative) . ( 2 )  

The quantity ( 2 )  is just  the probability of there being 
two mutations, one on the internal branch of the geneal- 
oges of each of two adjacent sites. It can  be  calculated 
in three steps.  First, enumerate all  possible  pairs  of gene- 
alogies, and determine the probability of each. Second, 
calculate for each pair of genealogies the probability that 
both sites are informative, and  third, determine the aver- 
age  probability of  having both sites  informative,  calcu- 
lated over  all the possible  pairs  of  genealogies and 
weighted by the probability of each pair of genealogies. 
Quantity ( 1 ) can  be determined in  exactly the same way 
by limiting the calculation  to  only those pairs of geneale 
ges whose  topological structures are incongruent. 

Adopting  a  shorthand, ( 1 ) and ( 2 )  can be written 
as P( Incongruent  and 2 Informative) and P( 2 Informa- 
tive), respectively. Then, using the  standard expression 
for  conditional probability, 

I.. = 
P (  Incongruent  and 2 Informative) 

P( 2 Informative ) . ( 3 )  

The expressions for I, and Io are similar, but rely on 
P( 1 Informative) and P( 0 Informative) , respectively. 
In words, P( 1 Informative) is the probability that one 
site is informative and  the  other site is not informative, 
and P( 0 Informative) is the probability that  neither 
of the two sites is informative. Using the formula for 
conditional probability, 

I1 = 
P (  Incongruent  and 1 Informative) 

P( 1 Informative) ( 4 )  

and 

I, = 
P( Incongruent  and 0 Informative) 

P( 0 Informative) 
. ( 5 )  
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P(  Incongruent  and 1 Informative) and P (  Incongruent 
and 0 Informative) are  the same as P( 1 Informative) 
and P( 0 Informative),  but  summed over only those 
cases when the genealogies of the two sites are incon- 
gruent. 

The genealogy of a  particular site is defined by three 
common  ancestor, or coalescent, events. If two adjacent 
sites remain  linked  during  their  entire history ( i . e . ,  
there is no recombination event between them),  then 
the same three coalescent events define the trees at 
both sites and their genealogies are identical (and, of 
course, congruent). If there is a  recombination event 
between the two sites, then  their genealogies can differ 
and might be incongruent. 

The pairs of genealogies for  adjacent sites can be 
classified on  the basis  of the time of the  recombination 
event. In  a coalescent view, looking backward in time, 
the genealogies of two adjacent sites are identical up 
to the time when a  recombination event occurred. If a 
recombination  event does occur, it happens  either ( I )  
before  the first coalescent event, (11) after the first but 
before the second coalescent event, or (111) after  the 
second coalescent event and before  the  third  one. If 
recombination does not occur  before  the first  coales- 
cent event, then  the two adjacent sites will necessarily 
be congruent.  That is, I1 and 111 above always result in 
congruent genealogies. In the case of  class I,  the two 
sites’ genealogies can be either  congruent  or  incongru- 
ent. No recombination event at all constitutes the 
fourth possibility,  class IV. The probabilities of these 
four classes  of genealogies are 

C 
c +  3 ’  

P(1) = - 

(HUDSON  and KAPLAN 1985). 
Within each class (I-IV) , there  are multiple genealo- 

gies to be considered. For example, Figure 2 shows the 
different genealogies that can occur  for  the case of 
recombination between the  second and third coales- 
cent events, class 111, for two adjacent sites labeled A 
and B. Genealogies i and ii in Figure 2 have different 
topologies, but  are identical in  their  contribution  to I,, 
I , ,  and Io. This is because the  internal  branch  on which 
an informative change can occur is the same in  both. 
Since, in all  of  i-iv the two site genealogies are  congru- 
ent, P( Incongruent  and 2 Informative), P (  Incon- 
gruent  and 1 Informative),  and P( Incongruent  and 0 
Informative)  are all equal to zero for each of the  four 

(ii) 

AB ~ AB  AB  AB 

A ( ~  AB  AB  AB  AB 

FIGURE %-Four distinct  genealogies for the case  when a 
recombination event occurs  after two coalescent  events, and 
before the third. A and B are adjacent  nucleotide  position. 
For  each tree, one of two lineages that persists after two coales- 
cent events becomes two lineages via recombination. Only 
those  trees  are shown in which the  lineage  on the left under- 
goes recombination  at time t:. Each of the trees i-iv has an 
equally  likely counterpart in which the lineage on the right 
undergoes  recombination. See  text and APPENDIX for further 
explanation. 

genealogies in the  figure. The probabilities of genealo- 
gies i, ii, iii, and iv are 2 / 9,  4/ 9, 1 / 9, and 2 / 9, respec- 
tively (given class III), which can be determined by 
considering  the  numbers of different possible  coales- 
cent  and  recombination events that can happen in class 
111 ( TAJIMA 1983). 

In calculating P( 2 Informative), P( 1 Informative) , 
and P( 0 Informative) for genealogies i-iv in Figure 
2, the distributions of times between coalescent and 
recombination events shown must be specified. Look- 
ing back into  the past, during some time intervals, both 
recombination and coalescent events might happen. In 
Figure 2, these are  marked with  asterisks. That is, tT 
represents  the time during which there  are i ancestral 
lineages present and in which either  a coalescent or a 
recombination event can occur. The density of tt ,  
f (  t f  ) is given by an exponential  distribution with pa- 
rameter ic + i ( i  - 1)/4N(HuDsoN  1983b). 

Once  a  recombination event has occurred, no more 
are possible (under the assumptions of the model), so 
the history  of the sample before  the time of recombina- 
tion is governed only by the coalescent process. Let t, 
be the time during which there  are i ancestral lineages 
when only a coalescent event may happen.  Then  the 
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density of t,, f (  t , )  is given by an exponential distribu- 
tion with parameter i( i - 1 ) / 4N ( KINGMAN 1982a,b; 
HUDSON 1983b; TAJIMA 1983). 

Let the  length of the  internal  branch of the geneal- 
ogy  of a site be r. Given a  particular value of r ,  and 
assuming that u is small, the probability of a  mutation 
that causes the site to be informative is simply UT. Simi- 
larly, the probability of no mutation is ( 1 - U T )  . If rA 
and r8 are  the  lengths of the  internal  branches  for  the 
two sites, A and B, then 

P( 2 Informative given T~ and r8 )  = 2 ~ ~ ~ ~ 7 ~ .  (10) 

This is because, for given  values  of 7* and rB,  mutation 
occurs independently  at  the two sites. The same prop- 
erty of independence leads to 

P(  1 Informative given rA and r8)  

= ?.LrA (1 - UT,j) + U r B (  1 - U 7 4 )  

= ~ 7 , l  + - 2 ~ ~ 7 ~ 7 8  (11) 

and 

P( 0 Informative given rA and 7 8 )  

= ( 1  - U T A )  (1 - UT,$) 

= 1 - U T A  - U T U  + u2r'47/3. (12) 

In calculating the  contributions to L2, Zl , and Zo for any 
particular  tree, it is necessary to take the  expectation 
of UT*, urR, and u2rArn over the distributions of the 
random variables rA and r8. The expectation of urA is 

u [; T A f  (7-A ) LZ'T.4 9 (13) 

U')  IoX IoX r4rnf( 7-11, 7 8 )  dTAd78, (14) 

where f (  r A )  is the probability density of T ~ .  An analo- 
gous expression holds for  UT,^. For u2rAr8, the expecta- 
tion over all  possible  values  of 7TA and 7~ is 

where f (  rA ,  7,$) is the joint distribution of rA and T ~ .  

These calculations are simplified by recognizing that rA 
and r8 are sums of the times between branch points 
on  the genealogies. Furthermore  the t's and t*'s are 
independent of one  another. For example, from tree 
iv in Figure 2,  

r,'i = t: + 2t; + 2 2 9  + 2t*,  

r/j = tf + 2t$ + 2t3, 
and 

TAT8 = tJ2 + 4t;t; + 4t;t, + 416' 

+ 8t: t3 + 4t: + 2t,t$ + 4tet$ + 4t2t3. (15) 

Then using the first and second moments of the expo- 
nential distributions for t, and t f ,  it can be  shown that 

H(2C + 3)  (2C + 5) 
3 ( C +  1 ) ( C +  2 )  ' 

e(c2 + 7 c  + 9 )  
3 ( C +  1 ) ( C +  2 )  ' 

E ( U 7 A )  = 

E (  U 7 8 )  = 

and 

E (  U'TATB)  

- B'(5C4 + 50C3 + 186C' + 299C + 176) 
- 

9 ( C +  l ) ' ( C +  2 ) 2  
. (16) 

The APPENDIX shows E(  urA) ,  E (  ur8),  and E (  U * T ~ T ~ )  

for every  possible  history  of two adjacent sites, for each 
of the  four cases (I-IV) discussed  above. Also shown in 
the APPENDIX are  the probabilities, within each class,  of 
each genealogy. The probabilities of the four classes are 
given  by ( 6 )  - (9 )  above. 

When the values  given in the Appendix are averaged, 
weighted by their within-class probabilities and by the 
probabilities of the  four classes, ( 10) - ( 12) give 

~ ( 2  Informative) = 02z, (17) 

P( 1 Informative) = e - 28% (18) 

P ( O  Informative) = 1 - B + 02z, (19) 

where 

177C" + 1091C' + 2234C + 1800 
360(C+ 1 ) ( C +  2 ) ( C +   3 )  

z =  . (20)  

For the calculation of the  joint probabilities of incon- 
gruent  and informative sites, only the last  six genealo- 
gies under case I listed in the APPENDIX need be consid- 
ered, as these are  the only genealogies that lead to 
incongruent sites.  Averaging  over these six  cases leads 
to the following: 

P( Incongruent  and 2 Informative) 

P( Incongruent  and 1 Informative) 

and 

P( Incongruent  and 0 Informative) 

Then, L2, Zl , and Io are  obtained, as in ( 3 ) - ( 5 ) , using 
expressions ( 17) - ( 23) : 

and 
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C(24 - 206 + 36') r, = 
6 0 ( C +  3 ) ( 1  - 6 + 0") ' 

(26) 

Clearly Z, does not  depend  on 6.  This is not  the case 
for Zl and Z,. However, an examination of the  functions 
for Il and lo revealed relatively simple and accurate 
approximations  for small  values  of 6 .  Plotting expres- 
sions ( 25)  and  (26) over a wide range of  values for C, 
and for 6 in the range between 0 and 0.1, showed the 
functions to be nearly flat as they vary  with respect to 
6 (results  not  shown).  In  short,  under  the assumption 
that  the  mutation  rate is  very  low, both Zl and 1,) are 
effectively invariant with respect to 6 .  Taking the limit 
as 0 goes to zero, for expressions ( 25)  and ( 26), leads 
to 

C 
3 ( C +  3 )  

I, = 

and 

2 c  Io = 5 ( C +  3 )  ' 

respectively. 
Together, expressions (24)  - (26) cover  all  possible 

situations, with regard to whether sites have congruent 
genealogies, that can occur  for  a  pair of adjacent sites. 
However,  only expression ( 2 4 ) ,  for 1 2 ,  can correspond 
to an observation. If  two adjacent informative sites are 
observed in a sample of four DNA sequences,  then it is 
possible to assess whether or  not they are  congruent 
(HUDSON  and KAPLAN 1985). However if neither,  or 

just  one, site is informative, then we cannot know 
whether  the  true genealogies of a  pair of  sites are con- 
gruent. 

With expressions for Zl and Io it is possible to develop 
an expression for &, the probability that two sites sepa- 
rated by n bases are  incongruent, given that  both  are 
informative and  that  there  are  no informative sites in 
the n intervening base positions. For convenience we 
assume that  the probabilities associated with  sites that 
are  separated by multiple bases can be assessed by tak- 
ing  the  products of probabilities for  adjacent bases. This 
approach entails an assumption of independence 
among pairs of sites that does not, in fact, hold (see 
below). 

For the case of  two informative sites that  are sepa- 
rated by one noninformative site, the genealogies of 
three base positions must be considered. Since each 
position has three possible unrooted topologies, there 
are  a total of 27 possible unrooted  three base topologies 
to be considered. However, topologies need only be 
distinguished with regard  to  whether  adjacent base  posi- 
tions are  congruent  and with whether  the first base 
position is congruent with the last base position. Let X, 
Y and Z  refer to three  different topologies as described 
in Figure 1. It does not  matter which specific configura- 
tion each  letter refers to,  rather  the  notation is used to 

describe whether sites are  congruent with one  another. 
In general we  will use X to refer to a  configuration, Y 
to refer  to just  one of the  other configurations that is 
not  the same as X, and Z to refer to the  third configura- 
tion that is neither  Xnor Y. In  the case of  two informa- 
tive sites separated by one noninformative site, one pos- 
sible configuration is that  the first and second bases are 
congruent,  and that  the  third base is not  congruent 
with the  second (and thus also not  congruent with the 
first) . This pattern is denoted XXY and  the probability 
of this pattern  (assuming independence) is simply the 
product of the probability of congruent genealogies 
between sites one  and two ( i.e., 1 - Zl ) multiplied times 
the probability of incongruent genealogies X and Y be- 
tween sites two and  three ( ;.e., I, / 2 ) .  This  latter term 
is divided by  two because the  pattern XY specifies a 
specific incongruent  pair ( ie., XY and  not XZ). More 
generally, the probability of either XXY or XXZ  is (1 
- Z, ) Zl . There  are  just  three  different combinations of 
topologies that  need be distinguished for  the case of 
two informative sites separated by one noninformative 
site: 

P(XXYor XXZ) = (1 - Zl)Zl;  P ( X W o r  XZZ) 

= 11 (1 - Z,); and  P(XYZor XZY) = 1 : / 2 .  (29) 

The sum of these terms is the total probability that 
two informative sites, separated by one noninformative 
site, have incongruent genealogies: 

An expression for  higher values  of n can be devel- 
oped by first focusing on  just  the noninformative bases 
that  separate informative sites.  Because the probability 
of incongruency is the same for any pair of adjacent 
sites, and because we  will generally be applying these 
expressions to cases where n is large and where Z, is 
small, we can borrow directly from  a well known expres- 
sion that is  widely used in studies of evolutionary dis- 
tance ( JUKES and CANTOR 1969) . There  are  three dif- 
ferences: the  four  character states ofJuKEs and CANTOR 
are  replaced by three  character states ( ie., the configu- 
rations in Figure 1 ) ; time, under  the JUKES and CANTOR 
model, is replaced by the  number of intervals between 
noninformative bases; and  the probability of mutation 
between individuals bases, under  the JUKES and CANTOR 
model, is replaced by the probability of the XY pattern 
(i.e., & ) / 2 )  for two noninformative sites. 

Let X. - * Xr8-I refer to the case where both  the left 
and right bases  in a  string of n noninformative bases 
are in the same configuration, regardless of which  of 
the  three configurations that is. The subscript n - 1 
refers to the  number of intervals between the bases. 
Then  the analogue to the JUKES-CANTOR expression for 
the probability that  the same character state is observed 
becomes, under  the  current model, 
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TABLE 1 

Flanking incongruent  informative  bases  separated  by  noninformative  bases 

Congruent  noninformative  bases Incongruent noninformative  bases 

Pattern Probability Pattern Probability 

For each pattern,  the  left-  and  rightmost  symbols refer to  informative  bases. In between the informative bases is a stretch of 
n noninformative  bases. X, Y and 2 each represent different  informative site configurations as shown i n  Figure 1 ,  however the 
specific configuration  for  each of X ,  Y and Z is arbitrary  (see text). Each pattern describes a possible  multibase  configuration 
when two informative  bases are separated by a stretch of noninformative  bases. All possible  configurations are represented with 
the exception that each  pattern  also  includes an equally likely corresponding  pattern with Y replaced by Z, and Z by Y. For this 
reason the terms in the last row are  twice  the sum of the probabilities  in  the  respective  columns.  Expression (31) applies  to the 
e, probabilities in the left column.  One-half of expression (32)  applies  to  the  those in the right  column  (see text). 

There  are two patterns to be considered  for  the case 
when the left and rightmost bases are  incongruent, 
X - - Y,- I and X - * * Zn-, . The probability that  either 
occurs is simply one minus expression (31 ) , or 

e,( X* * 9 Yn-] or X -  Z n - l )  
- - - 7 - S ( n - l ) r , , / Z  

9 3e . (32) 

At times it is necessary to consider just  one of the 
two incongruent  patterns  that can occur  for  a given 
configuration X ( e.g., X .  - Y,-l, but  not X. * * Zn-l ) . 
In this case the probability is one half that in (32) .  

We can now consider  additional flanking bases that 
are informative. Table 1 lists the possible configurations 
for n bases where the left and right bases are informa- 
tive.  Each configuration  includes an internal configu- 
ration corresponding to the possibilities for a  stretch 
of noninformative bases. The left column of terms in 
Table 1 corresponds to the case when no  net configura- 
tion change occurs across the  span of noninformative 
sites. The right  column describes the possible configu- 
rations when a  net  change does occur across the  span 
of noninformative bases.  Collectively these expressions 
cover  all  possible configurations in which two informa- 
tive sites separated by n intervening noninformative 
bases can occur. The overall probability that two infor- 
mative  bases separated by n noninformative bases are 
incongruent ( Z2,n) is simply the sum of the two expres- 
sions in the last row  of Table 1: 

Expression ( 33) applies for all n greater  than or 
equal to one. When n is equal to one, expression (33) 
simplifies to expression ( 3 0 ) .  This is because a single 
site is necessarily congruent with  itself, so that when n 

is equal to 1, P( X -  - * X n p 1 )  = 1. Expression (33) is not 
defined for n equal to zero, however this is already 
given by 1, in expression ( 24) . Using the  approximate 
expressions for Zl and Io in (27) and ( 28) ,  and includ- 
ing the special case of 1, when n is equal to zero, (33) 
becomes 

\ 2  

for n 2 1; and 

We have also developed an exact expression for J2,n 
that  does not entail  the assumptions associated with 
the differential equation  approach used by JUKES and 
CANTOR ( 1969) (though  the assumption of indepen- 
dence  among sites  still applies) and that does not use 
the  approximations of expressions ( 27) and ( 28) (re- 
sults  available upon  request). Numerous numerical 
comparisons between this exact expression and expres- 
sion ( 34) show that (34) is a very good  approximation 
(within 1% of the exact expression), except when dis- 
tances are  short (e .g . ,  n < 5 )  and ~9 is high (e.g., >0.05 
per base pair). 

A plot of (34) for several  values  of C is shown  in 
Figure 3. The limit of two-thirds is the expected conse- 
quence of three equally likely configurations that can 
occur  for an informative site (Figure 1 ) . Two informa- 
tive sites  with  many recombination events between them 
will be congruent  one-third of the time and incongru- 
ent two-thirds of the time. 

Estimating C: The expression for L2,,, can be used to 
estimate C. Consider,  for  example,  a sample of four 
sequences with three informative polymorphic sites.  Let 
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FIGURE 3.- Z2,,, calculated using  expression ( 34) for three 
different levels of recombination, as nvaries  from 0 to 20,000. 

the intervals between successive pairs of sites be num- 
bered 1 and 2, with interval lengths nl and Q. Each 
interval may be associated with  sites that  are  either con- 
gruent  or  incongruent. Let I,!J~ = Iz,njif interval iis  incon- 
gruent, where L2,ni is calculated using expression ( 3 4 ) ,  
and let $L = 1 - &,, if it is congruent.  Then  the overall 
likelihood of the  pair of intervals can be expressed as 

L = *I*2. (35)  

A maximum likelihood estimate of Cis that value, which 
when substituted  for C into (35)  , generates  the largest 
value  of L.  For example,  consider  a hypothetical data 
set with three informative sites, in which one interval 
has a  length of 100 bases and has congruent sites,  while 
the second interval has a  length of 500 bases and has 
incongruent sites. In this case, the likelihood function 
takes the form 

L = ( 1 - 12500)  12100. (36)  

By calculation or by plotting, this function can be shown 
to reach a maximal value at 0.452 when the estimated 
value of Cis equal to 0.023. 

When both intervals are  congruent,  there is no evi- 
dence of recombination. From a heuristic perspective, 
the most appropriate estimate of C would seem to be 
zero  in this case. It can also be shown for the case  of 
two congruent pairs of sites, at least with numerical 
examples, that  the highest value of L,  for nonnegative 
values  of C, occurs when C is zero. 

There  are two situations in which (35)  cannot be 
used to estimate C from a sample of four DNA se- 
quences with three informative sites. If the  data reveal 
only incongruent intervals, then they suggest a high 
recombination  rate,  but  there is no way to put  an  upper 
bound  on  the estimate. In this case, numerical exam- 
ples show that L approaches an asymptotic limit as C 
goes to infinity. It is also  possible for this method to 
fail  with one  congruent  and  one  incongruent interval. 
If  by chance,  the  incongruent interval is short, relative 

(37)  

to  the  length of the  congruent interval, then L may not 
have a maximum for a finite value of C. 

For data sets with more  than  four sequences and 
more  than  three informative sites, an overall estimate 
of C can be taken by averaging the estimate for every 
possible set of two intervals in all  possible subsets of 
four sequences. For two intervals, i and j ,  in subsample 
k ,  let y i Z , j ) k  be an estimate of C obtained by maximizing 
the likelihood, as in ( 3 5 ) .  We denote  the overall  esti- 
mate by y ,  which  is equal to 

ck x t k  Z J p h  Y ( t h , j k )  

mk 

(1) 
where ik and j k  refer to two intervals within subsample 
k ,  and mk is simply the total number of pairs of intervals 
found in subsample k .  The final denominator, ( y )  , is 
just  the  number of distinct subsamples of  size 4. When 
the  number of sequences, w ,  is large,  the  number of 
possible subsamples becomes unwieldy. In this  case y 
can be calculated using multiple randomly drawn sub- 
samples, each of  size 4. When calculating y ,  pairs of 
sites that  do  not generate a value of - y i t j ) k  (e .g . ,  where 
both pairs are  incongruent)  are  not included, and  are 
not  counted in mk. Similarly, those subsets of four se- 
quences  for which no values of y ( r J )  could be calculated 
(e.g., if the  number of intervals in the subset is zero or 
one) are  not  counted,  and  the  denominator of (37)  is 
reduced by the  number of such subsets. 

There  are two important assumptions employed in 
the  development of y that do not  hold. One is inherent 
to  the biology of DNA replication, and this is the as- 
sumption  that  the probability of incongruent histories 
for sites that  are  not  adjacent is equal to the  product 
of the probabilities for  adjacent base pairs. This can 
only be  true if adjacent base positions have indepen- 
dent histones ( i.e., free recombination), which is defi- 
nitely assumed to not  be  the case under the model. 
In effect the  method has conflicting assumptions: an 
assumption that  adjacent base pairs do  not have inde- 
pendent histories that is employed in developing ex- 
pressions (24 ) ,   (25 )  and (26)  ; and  an implicit assump- 
tion of independence  that is employed to generate  the 
expression for lz,n. The same implicit assumption of 
independence  appears  in  the use  of the maximum like- 
lihood  method, where the likelihood for multiple sets 
of pairs of  sites is determined by taking the  product of 
the likelihood for each set. 

A second implicit assumption that does not hold in 
practice is that  the  length of DNA sequences used in a 
study does not effect the probability of observing partic- 
ular  lengths for congruent or incongruent intervals. 
However neither Iz,n nor ( 1 - lz,n) are  approximated 
very  well for values  of n that  are close to the total length 
of  the DNA sequence. If DNA sequences are  short,  then 
more intervals will be  congruent simply because the 



840 J. Hey and J. Wakeley 

expected  length of congruent intervals is  less than  that 
for  incongruent intervals. The result will be a lower 
value  of for  data sets  with short  sequences, all other 
things being equal. 

The quality  of y was examined using computer simu- 
lation. A  computer  program was written to implement 
a  standard coalescent process with recombination 
(HUDSON  1983a). This program  did  permit multiple 
recombination events at  a given position over the 
course of a sample coalescence. In this the  program 
model  corresponds  more closely  to biological reality 
than to the assumptions employed in estimating C. 
However, the difference should have negligible impact 
for low values  of C. 

Expression (37) requires  either graphical or numeri- 
cal maximization, and  the summation across pairs of 
intervals and subsets of four DNA sequences can be 
tedious. A  computer  program, SITES, was written and 
used to  analyze  several comparative DNA sequence  data 
sets drawn from the  literature. SITES is a  general  pur- 
pose program  for  the analysis  of comparative DNA se- 
quence  data, and it is intended primarily for cases when 
multiple sequences are collected from a  population or 
species. SITES can be obtained via request to J.H. 

RESULTS 

The quality of y: Simulations were conducted over 
a wide range of parameter values, for  both  population 
parameters ( C and 0 )  and experimental  parameters 
(e.g., the  number of  DNA sequences and  the  length of 
DNA sequences). For each set of parameter values, 
many simulations were run.  The bias  of the  estimator, 
under a  particular set of parameter values, was assessed 
by taking the mean value  of y obtained from the simula- 
tions and dividing by the  parametric value  of C. This 
measure has a value  of one when there is no bias. We 
also  assessed the variation of y around  the  true para- 
metric value of C. We defined  a quantity, e, which is 
equal to the  square  root of the estimated mean  square 
error  (MSE) , divided by the  parametric value: 

e = -  =, where c 

(39) 

and R is the  number of simulations. In effect, E is a 
measure of the  spread  in  the distribution of departures 
of the estimates of C from the  true value, as a  propor- 
tion of the  true value. 

Figure 4a  shows the bias and E for 7, as a  function 
of changing sample size. Also shown in Figure 4a are 
bias and E for WATTERSON'S estimator of 0 ( WATTERSON 
1975; HUDSON  1990)  and  for  HUDSON'S  (HUDSON 
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FIGURE 4.-Bias and t (see text) as a function of the num- 
ber of DNA sequences in the sample. Between 50,000 ( n = 4) 
and 1000 ( n = 30) independent  simulations were conducted. 
Parametric values were C = 0.02, and B = 0.005. Each DNA 
sequence was 2000  base  pairs in length. For each simulation, 
all possible  subsets of four  sequences, up to a maximum of 
2000, were included in the determination of y .  For those 
sample sizes with more than 2000  possible four item subsets 
( i .e . ,  sample size >16), 2000 randomly drawn subset3 were 
used. ( a )  Values for y and WATTERSON'S estimator of 8,  0 
(WATI'ERSON 1975; HUDSON 1990). ( b )  Values for HUDSON'S 
estimator (1987), C. 

1987) estimator of C (Figure 4b) that were generated 
using the same simulations. The simulations for Figure 
4 were done with parametric values of C = 0.02, and 0 
= 0.005, for  a DNA sequence  length of 2000 base pairs. 
These values  were selected because they are  representa- 
tive  of results from analyses of  two data sets from Dro- 
sophila melanogaster (see Applications) . For these para- 
metric values, y has some bias ( the  mean value is about 
two-thirds of the  parametric  value)  but  the bias is not 
a  function of the  number of DNA sequences in the 
sample. For y ,  E is about  three times larger than it is 
for 8 for  a sample size  of 4, and  drops down to about 
twice that of 6 for larger sample sizes. Thus, despite a 
bias in the  estimator,  the variation in y about  the  true 
value of C, as measured by t, is only two to three times 
larger than it is for WATTERSON'S estimator of 0. HUD- 
SON'S (1987) estimator of C is not reliable for small 
sample sizes (Figure 4b) , but does approach  the  range 
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FIGURE 5.-Bias and E (see  text) as a function of the length 
of DNA sequences. Between  50,000 ( 100 bp) and 300 (20,000 
bp) independent simulations were conducted. Parametric val- 
ues  were 6 = 0.02, and 8 = 0.005, and the sample size  was 8 
for all simulations.  For  each simulation, all possible  subsets 
of four sequences, up to a maximum  of  2000,  were included 
in the determination of y. For  those  sample sizes  with >2000 
possible  four-item  subsets ( i.e., sample size > 16), 2000 ran- 
domly  drawn subsets  were  used. ( a )  Values for y and 8. ( b )  
Values for HUDSON'S estimator ( 1987), C. 

of  bias and E values that were  observed  for y ,  when 
sample sizes are large. 

Figure 5 shows bias and E as a function  of  changing 
DNA length,  for a sample size of  eight DNA sequences. 
In  this case, the bias of y is most  extreme  for  the  short- 
est DNA sequences.  Again,  HUDSON'S  estimator  has 
high bias and E for short sequences. The simulations 
for  Figure 5 where  done with parametric values of C = 
0.02, and B = 0.005, for a sample size of  eight DNA 
sequences. 

To examine bias and 6 as a function of 8 and C, 
simulations  were  conducted  for  many  points  across a 
wide  plain  of  space  for  these two quantities  (Figure 6 ) .  
Figure  6a shows that  for  about half  of the explored 
parameter  space,  the bias of y is <25% (i .e. ,  between 
0.75 and  1.25).  The  most  extreme bias  values found  in 
generating  Figure 6a were 0.22 and 1.37 (lower  right 
and  upper left,  respectively).  In  general, y is biased on 
the low side  when 8 is low and  Cis  high,  and  it is biased 
on  the  high  side  when B is high  and C is  low. For a 
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FIGURE 6.- y bias ( a )  and E ( b )  as a fhction of C and 8. 
I9 goes  from  0.001 to 0.1 on a log scale. C goes  from  0.0001 
to 0.05 on a log scale. The value  is  shown bv arrows and 
indicated  ranges, and the level of gray.  For  bias, the most 
extreme values  were 0.23 and 1.37.  For E, the most extreme 
values  were 0.33 and 7.87. Retween  1000 (high values  of C 
and 8)  and 20,000 (low values of C and I 9 )  independent 
simulations were conducted for each of 108 points evenly 
distributed throughout the log-log scale parameter space. The 
sample size was eight sequences, and the DNA length was 
2000 bp for all simulations. 

majority  of the  explored  parameter  space, y is biased 
on  the low side  and  this bias is most  extreme  when 8 
is  low and C is high. One reason  for this is that  the 
maximum  likelihood  expression  for a pair of intervals, 
( 3 5 ) ,  cannot yield an estimate of y( i , i )k  if both intervals 
are  incongruent  or  an  incongruent interval is much 
shorter  than a congruent interval. For  much of the 
parameter  space  there will be relatively few such  pairs 
of  intervals  simply  because the majority of intends  are 
congruent. However, to the  extent  that  pairs of intervals 
of  these classes do occur, they reveal evidence of recom- 
bination nn.d they are  not  included  the  determination 
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TABLE 2 
Representative  studies and parameter  estimates 

Locus Species Reference No. of bp w Y e y / e  c 
Adh D. melanogaster KRIETMAN (1983) 2650 11 0.0125 0.0057  2.21  0.0095 
white D. melanogaster KIRBY and WOLFGANG (1995) 5940 15 0.0210 0.0043 4.88  0.0035 
Adh, Adh-Dup D. pseudoobscura SCHAEFFER and MIL.LER (1993) 3450  99  0.0654 0.0225 2.91 0.1077 
@globin Humans FULLERTON et al. (1994) 3000 60 0.0017  0.0012  1.36  0.0024 
Mitochondrial 

Control  region Humans VIGILANT et al. (1991) 682  189  0.0580  0.0439  1.32 0.0672 

w is the  number of DNA sequences  in the study. y is an estimate of the  population recombination  rate, per base pair. It was 
calculated ;sing expression (37) with either all (2) possible subsamples of four sequenc_es, o r  1000 random subsamples, whichever 
was fewer. 6’ is Watterson’s estimator of 4Nu (WATTERSON 1975; HUDSON 1990). y / B  is an estimate of 4Nc/4Nu, and  thus an 
estimate of the  number of recombination events per  mutation event. c is an estimate of the population  recombination  rate, 
per base pair, calculated according to HUDSON (1987). 

of y .  Pairs  of intervals of these types are  more  common 
if recombination rates are high and  there  are relatively 
few informative sites, that is high C and low 0. 

Figure 6b shows that y is more reliable when the 
population  rate of recombination is high. Interestingly, 
E depends  much  more strongly on C than on 8. In effect, 

works nearly as  well for  a given rate of recombination, 
regardless of  how much variation there is. 

The same simulations used to  generate Figure 6 were 
also  used to examine  the  correlation between y and 
8. The average correlation across this range of parame- 
ter values was 0.17. The highest correlations were ob- 
served when both C and 0 were high, however  only 
-25% of the total surface was associated with correla- 
tions above 0.25, and  no correlations greater  than 0.5 
were observed (data  not  shown) . 

Applications: The results from several  analyses are 
shown in Table 2. In D. melanogaster, both  the Adh and 
white loci  reveal substantial recombination, as expected 
(HUDSON et al. 1987; KIRBY and WOLFGANG 1995 ) . An 
estimate of the  number of recombination events per 
mutation event can be obtained by dividing y by an 
estimate of 4 N u .  These estimates are 2.21 and 4.88 for 
Adh  and white, respectively (Table  2 ) . At Adh  there were 
43 polymorphic sites ( KREITMAN 1983), indicating  at 
least 43 mutations. Under  the assumptions employed 
in the estimation of 4Nc,  the estimated number of  re- 
cambination events in the history of the Adh  sample is 
95 (2.21 * 43) .  At Adh  and Adh-Dup in D. pseudoobscura, 
the estimated ratio of recombination to mutation is 
similar to that  for D. melanogaster. However estimates of 
both 4Nc and 4Nu are  higher in D. pseudoobscura. In  a 
sample of human P-globin sequences,  both y and 8 are 
considerably lower than  in  the Drosophila examples, 
however there still appears  to be more  than one recom- 
bination  per  mutation event. 

Table 2 also  shows  values for  HUDSON’S (1987) esti- 
mator of C. With the  exception of the white locus esti- 
mate,  the values do  not differ greatly from those for y .  
The data sets in Table 2  are relatively large. The D. 
pseudoobscura data in particular is of sufficient size that 
HUDSON’S estimator could be expected to work quite 
well (HUDSON 1987; SCHAEFFER and MILLER 1993). 

The accuracy of the estimates in Table 2 can be 
roughly assessed using Figure 6. If the Drosophila data 
set estimates for d and C are taken as correct,  then 
the  corresponding estimates of bias and  error can be 
obtained from the lower right  portions of Figure 6, a 
and b, respectively. In this region the bias is near 0.5 
and  the standardized error E is less than  one. Since the 
bias is not a function of the sample size (Figures 4 and 
5 ) ,  Figure 6a should be useful as a  rough  guide for 
data sets that  are larger than those used for the simula- 
tions used to generate  the figure. 

A critical assumption underlying the estimation of C 
is the infinite sites mutation model. If this does not 
hold,  and multiple mutations have caused polymor- 
phisms at individual base positions, then pairs of infor- 
mative  sites may appear to be incongruent in the ab- 
sence of recombination. As an  example of this, a 
mitochondrial  data set that  had  been  reported to  have 
had multiple mutation events at many  base positions 
(VIGILANT et al. 1991;  WAKELEY 1993) was analyzed. 
With no recombination in the mitochondria, any  pat- 
tern of incongruency in these data must be due to some 
failure of the infinite sites mutation  model.  The esti- 
mates of C are  quite high (Table 2)  . 

DISCUSSION 

The estimator y has several attractive features. Over 
much of the 0 and C parameter space, y has low to 
moderate bias and, especially for  higher values of C, a 
low mean  square error (Figure 6 )  . Comparisons of the 
reliability of y with that of a widely used estimator of 6 
has shown that  the two parameters can be estimated 
with comparable reliability,  especially for  higher values 
of C. y is also  relatively independent of estimates of d 
in two respects. First, an estimate of 6’ is not required 
to calculate y so that  the variance of an estimate of d 
does not contribute to the variance of y .  Second,  the 
mean square error of y does not vary greatly  as a func- 
tion of d ,  so that Ccan be estimated with similar reliabil- 
ity whether  there  are many polymorphisms or few  poly- 
morphisms. 

Depending on the size  of a  data  set, calculated 
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using expression (37) employs multiple interval-pair- 
based maximum likelihood estimates that  are averaged 
across pairs of informative site intervals and subsets of 
four DNA sequences. The  purpose of averaging across 
multiple pairs of intervals and across multiple subsets 
of four  sequences is to limit the overall  bias of to that 
found in estimates based on individual pairs of intervals. 
The averaging of many estimates, each based on a small 
subset of the  data,  should  help  ensure  that  the bias of 
the  estimator  does not change as a  function of the size 
of a  data set. It is  possible to design other estimators of 
C based on expression (34) ,  and we have considered 
several. A least squares estimator analogous to (37) 
has very similar properties, with  slightly higher average 
values for  the bias, y / c (results not shown) . We also 
considered  a  different maximum likelihood estimator 
that,  rather  than using the likelihood for all pairs of 
intervals within a sample of four sequences, employed 
the  joint likelihood for all intervals within a subset of 
four  sequences. This estimator also worked nearly as 
well  as expression (37 ) ,  but it had  higher bias when 
there were very large numbers of intervals (results not 
shown ) . 

Assumptions: The theory underlying y includes im- 
portant assumptions of panmixia, constant  population 
size, infinite sites mutation  model, and selective neutral- 
ity  of mutations. If panmixia does not hold, and  there 
exists population  structure,  then pairs of homologous 
DNA sequences  that have the  opportunity to undergo 
recombination will, on average, be more similar than 
pairs drawn at  random  from  the  entire  population. Pop- 
ulation structure will cause the genealogies that  are 
juxtaposed by recombination to be more similar, on 
average, and  the probability of recombination  being 
detectable will be less. In effect, the estimate of 4Ncwill 
be  reduced because the  rate of detectable recombina- 
tion reflects smaller local  effective population sizes. 

The effect of changing  population size on y may be 
difficult to predict. On the  one  hand, y is calculated 
using polymorphisms that  are phylogenetically informa- 
tive. Any recent  change in the  population size  may be 
expected to affect the  number of low frequency poly- 
morphisms, caused on average by recent  mutations 
( TAJIMA 1989a) , but  not so much  the  intermediate  fre- 
quency polymorphisms used for calculating y .  On the 
other  hand,  the recombination events that  are  detect- 
able by the congruency criteria  are relatively  new,  as 
they have occurred  more recently than  the  common 
ancestors in samples of  size four. On balance, y is ex- 
pected to be fairly  sensitive to the assumption of con- 
stant  population size because it is more sensitive to  the 
amount of recombination  than it is to the amount of 
variation (Figure 6b) . 

If the infinite sites mutation  model does not hold 
and multiple mutations, particularly parallel or back 
mutations,  are  segregating  at individual sites, then y 
will be elevated. In  a phylogenetic context, the incon- 
gruency criteria is equivalent to  a test for homoplasy. 

A  pair of incongruent sites in a sample of four se- 
quences can be  explained by two events: one mutation 
and one recombination event (as assumed in  the design 
of y ) , or two mutations. These two explanations  of in- 
congruency do differ, however, in  their predictions re- 
garding flanking markers. For example, if there has just 
been  a single recombination event, and it has caused 
informative sites A and B (ordered left to right) to be 
incongruent,  then all flanking markers to the  left  of  A 
should be congruent with A and  incongruent with B. 
Similarly,  sites to the  right of B will be  congruent with 
B and  incongruent with A. However if A and B are 
incongruent because of multiple mutations, then 
whichever site was the target of multiple mutations will 
be incongruent with  all other sites. This type  of contrast 
can be used  as a test for  recombination and to identify 
the location of recombination events (STEPHENS 1985). 
It may be possible to develop expressions that  are analo- 
gous to ( 24) ,  ( 25), (26)  and  (30) that  are  conditioned 
on  the probability of  sites being informative because of 
multiple mutation events. At present, y should only be 
trusted in those cases where it seems that parallel or 
back mutations have been  rare. 

The theory also  assumes that  mutations  are  neutral 
and  that  the genealogies have not  been  shaped by natu- 
ral selection. If natural selection is stabilizing, and sim- 
ply removing deleterious  mutations from the popula- 
tion,  then it may still be the case that segregating 
mutations  are  neutral and  that  the theory behind y 
holds approximately. However, if there has been bal- 
ancing selection, or recent selective  sweeps then this 
may not be the case. Both of these kinds of selection 
have parallels in models of  population  structure. Bal- 
ancing selection, whereby multiple functional alleles at 
a locus are  maintained by selection over long periods 
of time can create  a kind of genealogy that resembles 
a stable pattern of population subdivision (HEY 1991 ) . 
So too, a recent selective sweep and associated genetic 
hitchhiking can create  a patternjust like that of a  recent 
population expansion ( TAJIMA 1989b) . 

The theory also contains some implicit assumptions 
about  the  recombination process. Like mutation, re- 
combination was modeled as a  random process that has 
a low probability of occurrence  per  generation  per  pair 
of adjacent base pairs. In building up the expression 
for I*,n it was also  implicitly assumed that every recombi- 
nation event changes the  tree topology, not  just  for 
adjacent base positions, but also for all  of the flanking 
sequence. In essence recombination has been  modeled 
as a crossover event that begins at  one  point  and  then 
migrates in one direction to the  end of the DNA se- 
quence. This single point process is modeled after mei- 
otic recombination and has just  one  parameter, c. 
Other multi-point processes of gene  exchange, such 
as gene conversion (HILLIKER et al. 1994)  and  gene 
exchange via induction in Escherichia coli ( MCKANE and 
MILKMAN 1995) , require  more  than two parameters to 
model. y can be calculated for any data set with multi- 
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ple informative polymorphisms, but it is not clear how 
to interpret  the  number if recombination is  actually a 
multiparameter process. In general, however, any pro- 
cess that elevates incongruency will also  elevate y ,  so it 
may still be useful as a  rough  indicator of gene ex- 
change. 

Estimating Nand u: One surplus benefit to having 
a relatively reliable estimate of C is the ability in some 
instances to estimate N, the effective population size. 
For organisms with  well mapped  genomes it is possible 
to estimate c, the  recombination  rate  per base pair per 
generation. For example, KLIMAN and HEY ( 1994) used 
the  relationship between physical and genetic maps to 
generate estimates of c for many D. melanogaster loci. 
For Adh, the estimate of the recombination rate was 
0.00198 centimorgans  per kilobase pair  per  generation, 
for an estimated c of 1.98* lo-’ recombination events 
per base pair  per  generation. Since y for Adhwas  0.0125 
(Table 2 ) ,  the estimate of Nis 157,828 individuals ( i.e., 
0.0125/4/1.98*10~s). Actually,  this is just the esti- 
mated effective number of females, since recombina- 
tion does not  occur  in male D. melanogaster. 

A similar approach can be used in  conjunction with 
an estimate of 8 to estimate the  neutral mutation rate, 
u; though the estimate will not be independent of that 
for N. In general,  direct estimates of u are difficult 
to obtain. For those organisms where c is more easily 
estimated than u, y provides an indirect way of estimat- 
ing u. Again using Adh in D. melanogasteras an example, 
Table 2 shows the estimated ratio of recombination to 
neutral  mutation rates to be 2.21.  Assume, for argu- 
ments sake, that  both  recombination and mutation oc- 
cur equally in both sexes but  at half the  rate observed 
in females. Then  the Adh estimate of c ( 1.98* 2 
per base pair per  generation, with the  one half adjust- 
ment for no recombination  in  males)  corresponds to 
an estimated neutral  mutation  rate of 4.5 * IO-’ per base 
pair  per  generation ((1.98*10-s/2)*(1/2.21)).  

This work was supported by National Science Foundation grant 
DEE9306625  to  J.H. and National  Institutes of Health  National Re- 
search Service Award  GM-17745-01 to J.W. 
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APPENDJX 

All possible histones of two adjacent sites for cases I-IV 

Case Genealogy Probability E(uT, )  E ( m d  E(U%,'Th) 

I (ABA-,-B)(A-,-B:l)(l,AB:2)(2,AB:3)(3,AB:4) 

(AB:A-,-B) (A-,-B:l) (1,AB:2) (AB,AB:3) (2,3:4) 

(AB:A-,-B)(AB,AB:l)(A-,-B2)(1,'L:3)(3,AB:4) 

(AB:A-,-B)(AB.A3:1)(A-,-B2)(1,AB:3)(2,9:4) 

(AB:A-,-B) (AB,AB:l) (A-,-B2) (2 ,AB:3)  (2,3:4) 

(AB:A-,-B) (AB,AB:l) (1,AB:2) (A-,-B3) (2,3:4) 

(AB:A-,-B)(AB,AB:l)(l,AB:2)(2,-B:3)(3++:4) 

(AB:A-,-B)(AB,AB:l)(l,A-:2)(2,-B3)(3,AB:4) 

(AB:A-,-B) (AB,AB:l) (1 ,A-:2) (AB,-B:3) (2,3:4) 

(AB:A-,-B)(AB,AB:~)(~,-A~)(~,ABAB:~)(~,-B~) 

(AB:A-,-B) ( A B , A B : l )  (-B,AB:P) (1,A-:3) (2,3:4) 

(AB:A-,-B) (AB,AB:l) (-B,AB:2) (2,A-:3) (1,3:4) 

(AB:A-,-B)  (AE3,AB:l) (-B,AB:2) (1,2:3) (3,A-:4) 

(AB:A-,-B)(-B,AB:l)(I,A-:2)(2,AB:3)(3,AB:4) 

(AB:A-,-B) (-B,AB:l) (1,A-:2) (AB,AB:S) (2,3:4) 

(AB:A-,-B)(-BPLB:l)(AB,AB:2)(1~-:3)(2,34) 

(AB:A-,-B)(-B,AB:l)(AB,AB:P)(1,'2:3)(3,A-:4) 

(ABA-B) (-B,AB:l) (AB,AE3:2) (2,A-:3) (1,3:4) 

(AB:A-,-B) (-B,AB:l) (1,AB:2) (2,A-:3) (3,AB:4) 

(ABA-B) (-B,AB:l) (1,AB:2) (2,AB:3) (3,A-:4) 

(AB:A-,-B) (-B,AB:l) (1,AB:2) (AB,A-:3) (2,34) 

(AB:A-;B)  (-B,AB: 1 ) (AB,A-:2) (1,2:3) (3&5:4) 

(AB:A-,-B) (-B,AB:l) (AB,A-:2) (1,AB:3) (2,3:4) 

(AB:A-;B) (-BAB:l) (AB,A-:2) (2,AB:3) (1,3:4) 

II (AB,AB:l) (l:A-,-B) (A-;B:2) (2,AB:3) (3,AB:4) 

(AB,AB:l) (I:A-,-B) (A-,-B:2)  (AB,AB:3) (2,3:4) 0(15C + 34) 

- 8' 
18 

438' 
18 

- 78 ' 
72 

- 
72 

- 0' 
72 

- 8" 
36 

1798 ' 
72 

658' 
24 

- 

- 

78' 
24 
0' 

72 
8' 

72 

78' 
72 

58 ' 
72 

230' 
72 

178' 
7 2  

- 

- 

- 

- 

- 

- 

- 

H'(7C' + 40C + 68) 
72(C + 2)' 

8(15C + 34) B'(187C' + 808C + 884) 
54 12(C + 2)  12(C + 2) 72(c + 2)' 
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APPENDIX 

Continued 

11 (AB,AB:I) (1:A-,-B) (AB,AB:P) (2,-B:3) (3,A-:4) 

(AB,AB:I)(l:l-,-B)(AB,AB:2)(A-,-B:3)(2,3:4) 

(AB,ABl) (l:A-,-B) (AB;B2) (2,A-:3)  (3,AB4) 

(ABAB: I )  (1:A-,-B) (AB,-B:2) (2,AB:3) (3A-:4) 

(AB,AB:l) ( I A - B )  (AB,-B:2)(A-,AB:3) (2,3:4) 

(AB,AB:l)(AB:A-,-B)(~~-,-B2)(1,2:3)(J,AB:4) 

(AB,AB:l) (AB:A-,-B) (A-,-B:2) (2,AB:S) (1,3:4) 

(AB,AB:l)(AB:A-,-B)(A-,-B:2)(1,AB:3)(2,3:4) 

(AB,zWI) ( A B A - B )  ( 1  ,A-:2) (2;B:3) (3,.4!3;4) 

(AB,AB:l) (AB:A-,-B) ( 1  ,A-:2) (AB,-B:3) (2,3:4) 

(AB,AB:l) (AB:A-,-B) (1,A-:2) (2,AB:J) (S,-B4) 

(AB,AB:I) (AB.A-,-B) ( 1  , A M )  (2,A-:3) (3,-B:4) 

(AB,AB:l)(AB:A-;B) (1,AB:2) (A-,-B:3) (2,3:4) 

(ABAB: I )  (AB:A-;B) (A-,AB:2) (1 ,-B:3) (2,3:4) 

(AB,AB:l)(AB:A-;B)(A-,AB:2)(2,-B:S)(1,3:4) 

(AB,AB:l) (AB:A-,-B)  (A-,AB:2) (1,2:3) (3,-B:4) 

111 (AB,AB:l)(l,AB:2)(2:A-,-B)(A-,-B:3)(3,AB:4) 

(AB,AB:l)(I,AB:'L)(P:A-,-B)(AB,-B:3)(3,A-:4) 

(AB,AB:I) (AB,AB2)  (l:A-,-B) (A-,-B:3) (234) 

(AB,ABl) (AB,AB:2) (1:A-,-B) (2,-B:3) (J,A-:4) 

IY (AB,ABl)(l,AB:2)(2,AB:3) 

(AB,AB:l) ( A B , A B 2 )  (1,2:3) 

H(17C + 38) 
12(C + 2)  

H(17C + 38) 
12(C  + 2 )  

H(3C + I O )  
1 2 ( C  + 2) 

H(15C + 34) 
12(C  + 2 )  

H(3C + I O )  
In((:  + 2 )  

H(3C + I O )  
12(C+ 2)  

H(15C+ 34) 
12(C + 2) 

H(3C + IO) 
12(C + 2) 

H (C + ti) 
12(C + 2) 

H(C + 6) 
12(C + 2 )  

H(17C + 38) 
12(C + 2) 

H(17C + 38) 
1 2 ( C +  2) 

H(5C+ 14) 
12(C + 2) 

H 
3(C + 2 )  

H 
5 (  0'  + 2) 

R ( 2 C +  3 ) ( 2 C +  5) 
3 ( C +  l ) ( C +  2) 

O(2C + 3 ) ( 2 C  + 5 )  
3 ( C +  1 ) ( C +  2) 

H 
3(f: + 2) 

H(4C + 7) 
S ( C  + 1 ) ( C  + 2) 

H(5C + 14) 
12(C + 2) 

H(17C+ 38)  
12(C + 2) 

H ( C  + 6) 
1 2 ( C +  2 )  

e( c + 6 )  
12(C + 2) 

H ( 3  c + 10) 
12(C + 2) 

H(15C + 34) 
12(C + 2) 

H(3C + 1 0 )  
1 2 ( C +  2) 

H(3C+ 10) 
1 2 ( C  + 2) 

H ( 1 K  + 34) 
12(C + 2) 

H ( 3 C  + I O )  
12(C + 2) 
H(C + 6) 
12(C + 2) 

H ( C  + 6) 
In(<: + 2) 

H ( 3 C  + 10) 
I 2 ( C  + 2) 

H(15C + 34) 
1 2 ( C +  2) 

H ( K +  10) 
1 2 ( C +  2) 

H 
3(C + 2 )  

H 
3 ( C  + 2) 

H(2C + 3 ) ( 2 C  + 5 )  
3 ( C  + 1 ) ( C +  2) 

H(C' + 7 c  + 9) 
3 ( C  + 1 ) ( C +  2 )  

H 
S( c + 2) 

H(4C + 7) 
3(C+ I)([;+ 2) 

H'(51C:' + 248C + 308) 
72(C + 2)' 

H'(255C' + 968c' + 1052) 
7 2 ( C  + 2)X 

H'(C' + 8C + 14) 
9 (C + 2)? 

H ' ( C '  + 8C + 20) 
36(1'. + 2)i 

H'(3C' + 16C + 24) 
18(C + 2)' 

2H'(13C' + 4 7 c  + 4.1) 
9 ( C  + l)'(C + 2)' 

Every genealogy above of two sites in  a  sample of four sequences is defined by either  three coalescent events (case IV) or  one 
recombination  event and  four coalescent events (cases 1-111). The parenthetical  notation lists these events from most recent  to 
most ancient, left to right.  Inside  each  set of parentheses, descendant(s)  are listed to the left of the colon and  ancestor(s) to 
the right.  Thus,  in case I, genealogy 1, the first event  looking back is a  recombination event; the  second is the coalescence of 
the resulting partial ancestral  sequences; the  third is the coalescence of the result of the second event with any one of the  other 
three  other sampled  sequences; the  fourth is the coalescence of the result of the  third event with either of the remaining two 
sequences; and  the fifth is the only possible event left. Certain symmetry properties  are used to avoid enumerating trees that 
are  redundant with respect to the derivation of &, 4 ,  and Lj. For instance, in case I, genealogy 1, it does not matter which of 
the four  sequences is the result of recombination (first event),  neither  does it matter  in the third and  fourth events, which of 
the presently sampled  sequences, is chosen to coalesce. 


