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ABSTRACT Population genomic datasets collected over the past decade have spurred interest in developing methods that can utilize
massive numbers of loci for inference of demographic and selective histories of populations. The allele frequency spectrum (AFS)
provides a convenient statistic for such analysis, and, accordingly, much attention has been paid to predicting theoretical expectations
of the AFS under a number of different models. However, to date, exact solutions for the joint AFS of two or more populations under
models of migration and divergence have not been found. Here, we present a novel Markov chain representation of the coalescent on
the state space of the joint AFS that allows for rapid, exact calculation of the joint AFS under isolation with migration (IM) models. In
turn, we show how our Markov chain method, in the context of composite likelihood estimation, can be used for accurate inference of
parameters of the IM model using SNP data. Lastly, we apply our method to recent whole genome datasets from African Drosophila
melanogaster.
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THE explosion in availability of genome sequence data
brings with it the promise that longstanding questions

in evolutionary biologymight now be answered. In particular,
understanding the balance of evolutionary forces when
populations begin to diverge from one another is crucial
to our understanding of the process of speciation. Popula-
tion genomic sampling of multiple individuals from closely
related populations provides our clearest view of the evolution-
ary forces at work during divergence; however, it remains
a challenge as to how best to analyze such massive datasets in
a population genetic framework (Sousa and Hey 2013).

A popular model for population divergence is the so-called
isolation with migration (IM) model (Wakeley 1996; Nielsen
and Wakeley 2001; Hey and Machado 2003), in which a sin-
gle ancestral population splits into two daughter populations

at a given time, and the daughter populations then have some
degree of geneflow between them. IM models are a conve-
nient framework for statistical estimation of population genetic
parameters as the models described by various parameter com-
binations exist along a continuum between pure isolation after
divergence to panmixia among daughter populations. More
complex models of divergence, for instance, secondary contact
after isolation or geneflow that stops after a certain period of
time, are also readily modeled in the IM framework. As a re-
sult, numerous methods are now available for estimation of
IM parameters.

Generally there exist two classes of methodology for the
estimation of IM model parameters: genealogical samplers
that aim to accurately compute the probability of a population
sample under the assumption of no recombination within
a given locus (e.g., IMa2; Hey and Nielsen 2004, 2007),
and methods that make use of the joint allele frequency spec-
trum (AFS) and assume free recombination between SNPs
(e.g., @a@i; Gutenkunst et al. 2009). While genealogical
samplers yield maximum likelihood or Bayesian estimates
of population parameters, they become somewhat unwieldy
for use with genome-scale data, due to the assumption of no
recombination. Thus, with the enormous increase in popu-
lation genomic data from both model and nonmodel sys-
tems, much recent effort has been devoted to AFS-based
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approaches that rely upon composite likelihood estimation
(Gutenkunst et al. 2009; Naduvilezhath et al. 2011; Lukić
and Hey 2012; Excoffier et al. 2013).

Estimation methods based on the joint AFS between pop-
ulations center around calculating the probability of an
observed AFS given the vector of parameters that describe
the population history. The method for calculation of this
expected AFS is thus central, and varies between competing
methods. For instance, Gutenkunst et al. (2009) took the
approach of numerically solving a diffusion approximation
to the population allele frequency spectrum, whereas more
recent methods of demographic inference rely upon coales-
cent simulation to estimate the expected sampled AFS
(Naduvilezhath et al. 2011; Excoffier et al. 2013). While both
of these approaches have been shown to be reliable for de-
mographic inferences under many parameterizations, both
are approximate and may contain error to various degrees
across parameter space.

Here, we introduce a method for exact calculation of the
joint AFS under two-population IM models with continuous
migration. Our method uses a coalescent Markov chain ap-
proach that isdefinedon the state spaceof theAFS itself.Using
this newly defined state space, in combination with the rich
mathematical toolbox ofMarkov chains,we are able to readily
compute the expected AFS of a given IM model for moderate
sample sizes (say n1 ¼ n2 , 9). We compare our coalescent
Markov chain calculations of the AFS to diffusion approxima-
tions and that obtained via simulation. Further, using simu-
lation we show how our approach can be used for accurate
inference of demographic parameters. Lastly, we apply our
software package implementing themethod, IM_CLAM, to pop-
ulation genomic data from African populations of Drosophila
melanogaster.

Methods

Model

Here, we present a strategy for exact calculation of the joint
AFS under the IM model, and the subsequent inference of its
associated parameters, that relies uponboth discrete time and
continuous time Markov chains (DTMC and CTMC, respec-
tively). Inoutline, our approach involvesfirst enumerating the
complete state space associated with a given configuration of
samples from twopopulations (i.e., sample sizes), followedby
construction of a transition matrix to be used for a DTMC (or
the analogous CTMC), and, finally, through the use of stan-
dard Markov chain techniques, the calculation of the implied
joint AFS. For reasons that will become clear below, we begin
by describing how one would calculate the exact joint AFS
from a two population island model, before moving on to the
full-blown IM model.

A Markov chain on the state space of the joint AFS

The first step in our approach requires the complete enumer-
ation of the state space associated with our Markov chains

givenasample configuration.Thestate spacewedescribe is on
the space of the allele frequency spectrum. That is to say, each
state of our model implies a unique contribution to the joint
AFS of the model in question. To track the allele frequency
contribution impliedbyeach state,wewill track thenumberof
descendent leaf lineages in each population that each gene
copy present is ancestral to.Wewill need to track this quantity
independently for each population to deal with migration.
To introduce our state space consider a sample that consists
of one allele for population 1, and one allele from popula-
tion 2, and let n1 and n2 be the sample sizes such that
n1 ¼ n2 ¼ 1 (Figure 1). Although this is a trivially small case,
it is adequate for accurately describing the form of the state
space. Our initial state (i.e., the configuration at the time of
sampling), call it A0; is

A0 ¼
�
0 0
1 0

��
0 1
0 0

�
;

where the left and right matrices represent the state in
populations 1 and 2, respectively, and the entry at i; j rep-
resents the number of gene copies ancestral to i sampled
alleles in population 1 and j sampled alleles in popula-
tion 2. By convention, these state space matrices are zero
indexed, and there will never be a nonzero value at the
position ð0; 0Þ as the model does not track lineages that
are not ancestral to the sample. The initial state A0 indi-
cates that there is a single allele in population 1 that is
ancestral to one of the sampled gene copies from popula-
tion 1, and a single allele in population 2 that is ancestral
to one of the sampled gene copies from population 2. Mov-
ing back in time in Figure 1, the first event is a migration
event from population 1 to population 2. Thus, in state
A1, the matrix representing population 2 now has two
alleles, one of which is ancestral to the sampled gene copy
in population 1, and another that is ancestral to the sam-
pled gene copy from population 2. Further notice that the
left hand matrix, representing population 1, is empty. Fi-
nally, two alleles coalesce to find the MRCA in popula-
tion 2, as indicated in state A5:

To enumerate the complete state space associated with
a given sample configuration (n1;n2), we use a recursive ap-
proach that considers all possible coalescent and migration
moves among present gene copies to exhaustively find all
possible states, including MRCA states that will represent
the absorbing states of our Markov chain. Note that, in this
two-population island model, only two absorbing states are
possible—the MRCA could be found in population 1, or it
could be found in population 2. In the case of n1 ¼ n2 ¼ 1
as shown in Figure 1, there are a total of six possible states;
however, the number of states grows extremely quickly
with increasing sample size (see Appendix). For instance,
when n1 ¼ n2 ¼ 2; there are 46 possible states, and when
n1 ¼ n2 ¼ 3; there are 268 states. Figure 2 shows how the
state space grows in sample size, and, while growth is sub-
exponential, it clearly explodes for larger samples. In
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Supplemental Material, Figure S1 in File S1, we show the
associated compute time to calculate the AFS of an IM
model as a function of sample size using the implementa-
tion introduced below. Computational complexity grows
quickly in sample size, indeed nearly exponentially, so we
suggest limiting use of our method to samples of size
n1 ¼ n2 , 9; although larger samples would be feasible
on appropriate hardware.

Markov chain transition matrix

Having defined the state space, we next consider the form
of the transition matrix associated with the DTMC. Tran-
sitions between states in our coalescent Markov chain
depend both on parameters of the model (e.g., population
sizes, migration rates), and on the combinatoric proba-
bility involved in the chain move. For instance, let ni be
the number of active lineages in population i within
a state of the chain. Further, let Ni be the population size
of population i and its associated coalescent rate be
Ci ¼ niðni 2 1Þ=4Ni: Finally, defineMi as the migration rate
from population i scaled by effective population size such
that Mi ¼ 4Nim; where m is the fraction of the focal pop-
ulation made up of migrant individuals each generation.
Jumps of the chain will depend on these parameter-
dependent rates (Ci;Mi) as well as the combinatoric prob-
abilities that only depend on the configuration of lineages
present within each state.

Consider first the probability of a coalescent event in pop-
ulation i thatmoves the chain, fzg; from state Ay at time t to Az

at time t þ 1: Such a coalescent event could happen either
between two lineages of different types (i.e., ancestral to dif-
ferent numbers of sampled gene copies among populations),

or between two lineages of the same type (i.e., ancestral to
the same numbers of sampled gene copies among popula-
tions), so let us label our two focal lineages that will coalesce
as k and l. If k and l are of the same type, and if there exist x
copies of this lineage type in population iwithin state Ay; then
the combinatoric probability of such an event, call it TðAy;AzÞ;
would be TðAy;AzÞ ¼

�
x
2

���
ni
2

�
If k and l are of different

types and there exist xk copies of k and xl copies of l in pop-

ulation i within state Ay; then TðAy;AzÞ ¼ xk 3 xl

��
ni
2

�
We

can now write down the complete probability of a coalescent
event as

Prob
�
zðtÞ ¼ Ayjzðt þ 1Þ ¼ Az

� ¼ TðAy;AzÞ3Ci:

Notably, the first combinatoric term, because it does not de-
pendonparametersof themodel, canbeprecalculatedandthe
transition matrix simply updated by scaling by the coalescent
rates of interest.

In the case of a migration event from population i to j, the
terms of the transition matrix take the form

Prob
�
zðtÞ ¼ Ayjzðt þ 1Þ ¼ Az

� ¼ x
ni
3 niMi;

where, as before, x is the number of copies of the lineage
involved in the migration defined by the transition from Ay

to Az:

Tomake this concrete, let us focus for amoment on the state
space of a sample of size n1 ¼ 2; n2 ¼ 1: This complete state
space is included in the Appendix and labeled B: Next consider
the coalescent event that transitions the chain from state

B8 ¼
0
@ 0 0

0 0
0 0

1
A
0
@ 0 1

2 0
0 0

1
A to state B12 ¼

0
@ 0 0

0 0
0 0

1
A
0
@ 0 0

1 1
0 0

1
A.

In this move, one of the two lineages that are only ancestral
to gene copies from population 1 coalesces with the line-
age that is only ancestral to population 2. Using the equa-
tion above, the combinatoric probability of the move is

TðB8;B12Þ ¼
�
23 1

��
3
2

��
¼ 2=3; and the complete proba-

bility of the transition between states is Prob
�
zðtÞ ¼

B8jzðt þ 1Þ ¼ B12
�¼TðB8;B2Þ3C2 ¼ 1=33 3=2N2¼ 1=2N2:

If we consider instead the other possible coalescent
event from state B8 that moves the chain to state

B2 ¼
0
@ 0 0

0 0
0 0

1
A
0
@ 0 1

0 0
1 0

1
A; then two lineages of the same type

have coalesced, TðB8;B2Þ ¼
��

2
2

���
3
2

��
¼ 1=3 and

Prob
�
zðtÞ ¼ B8jzðt þ 1Þ ¼ B2

�¼ TðB8;B2Þ3C2 ¼ 1=33
3=2N2 ¼ 1=2N2:

Turning our attention back to the case of n1 ¼ n2 ¼ 1 (see
Appendix), the unnormalized transition matrix associated
with the DTMC, call it P, would be

Figure 1 Representative state space for a two-population Island
Model. Shown here is an example of a two-population island model
with sample sizes n1 ¼ 1 and n2 ¼ 1: The model has two population
sizes, N1 and N2; and two migration rates, m1 and m2: The represen-
tative state space at each phase in the coalescent tree is shown to the
right.
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P ¼

0 M1 0 M2 0 0

M2 0 M2 0 0
1

2N2

0 M1 0 M2 0 0

M1 0 M1 0
1

2N1
0

0 0 0 0 1 0

0 0 0 0 0 1

0
BBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCA

;

where now each matrix entry Pij is scaled so that each row
sums to one such that

P
jPij ¼ 1: Each Pij represents the prob-

ability of the Markov chain moving from state Ai to state Aj in
the next jump. The Pmatrix also implies an analogous CTMC
transition matrix, call it Z, whose rows are constrained such
that

P
jZij ¼ 0: With these transition matrices in hand, we

now turn attention to computing the SFS of the island (or
IM) model.

Calculating the AFS

As said above, each state implies an associated contribution to
the allele frequency spectrum. Let F represent the joint AFS
from a two-population sample. F will be matrix value of size
n1 þ 1 rows and n2 þ 1 columns, where n1 and n2 are the
sample sizes from populations 1 and 2, respectively. Entries of
F, Fij; will be the number of SNPs sampled with i derived
alleles in population 1 and j derived alleles in population 2.
To map a given state Ai to its contribution to F, we need only
ask how long the system stays in a given state (i.e., the
expected duration), and then add that amount of time to each
of the corresponding cells of F from the nonzero entries in
both the right and left hand matrices of the Aith state. This is

Figure 2 State space expansion as function of sample size. Here we show how the state space grows as function of sample size considering symmetric
sampling such that n1 ¼ n2: Note that the y-axis is shown on a log scale.
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justified as the probability mass associated with each cell of
the AFS is simply proportional to the mean total length of
branches that when mutated lead to frequencies of the focal
AFS position when normalized by the mean total length of
the associated coalescent tree (Adams and Hudson 2004).

Wecanuse the toolsofMarkovchains to thenperformthe two
calculations needed to exactly calculate the AFS under a given
model: (1) calculate the expected number of times each state is
visited before absorption (i.e., reaching the MRCA), and (2)
calculate the expected length of time the chain is in each state
to compute the AFS. The latter calculation is simply the expo-
nentially distributed waiting time under the coalescent with
migration, which itself is a function of the number of gene copies
active in a given state, population sizes, and migrations rates.

Calculating the expected number of visits to each state is
more involved. We can rearrange our transition matrix P into
what is called “canonical form.” We assume that P has r ab-
sorbing states and t transient states, such that

P ¼
�
Q R
0 Ir

�
;

where Q is a t3 t submatrix, R is a t3 r submatrix, and Ir is
the identity matrix of rank r (Kemeny and Snell 1976). Using
this factorization, we can next compute the fundamental ma-
trix of our Markov chain, N, by using the relationship

N ¼ ðIt2QÞ21; (1)

where the entries Nij represent the expected number of visits
to state j given the chain started at state i, and It is a rank t
identity matrix. It is important to note that this calculation
will thus require the inversion of a potentially very large
matrix, thus complicating our implementation. For the calcu-
lation of the island model, however, we are only interested in
one row of N, as the starting state is known with certainty
(i.e., the observed sample), so this is readily solved. Also, note
that N gives us the expected number of visits to each state by
the DTMC until absorption (i.e., the MRCA). For the island
model, this describes the complete stochastic process as, in
that case, we are dealing with a time homogenous process.
For models with changes in population size or populations
splitting we would have to consider different “phases” of the
demographic history separately, as the transition rates through
the system, or indeed even the state space of the system will
change moving back in time.

Returning for a moment to the island model then, having
calculated N, we are ready to compute the expected AFS. As
we said before, the expected AFS will simply be the sum of the
products of the number of visits to each state and the length of
time spent in each state. For the islandmodel in the casewhere
n1 ¼ n2 ¼ 1; therewill be six terms in the summation tofind F,
one for each state.

Isolation with migration

To calculate the AFS for the IM model, we calculate the
contributions to the AFS from two sources: that of the island

model phase of themodel prior to divergence (looking back in
time), and the contribution to the AFS from the single,
ancestral population (see Figure 3). The contribution to the
AFS from the islandmodel portion, call it FI; can be computed
by first calculating the total AFS from the island model from
time zero to absorption, Ftot; and then subtracting off the
portion of the AFS contributed from the population diver-
gence time, tdiv; until absorption (e.g., Wakeley and Hey
1997). Let the vector pðtÞ be the probability of being in each
state of our Markov chain at time t. We need to calculate
pðtdivÞ both to find FI and to figure out where our system
begins the single population phase of the IM model. We use
a CTMC representation of our same transition matrix from
the island model (denoted Z) to compute pðtdivÞ using the
matrix exponential such that

pðtdivÞ ¼ pð0ÞetdivZ: (2)

With pðtdivÞ in hand, we can use the fundamental matrix of
the island model, N, to compute the number of visits to each
state conditional on starting in each state at tdiv; with proba-
bility pðtdivÞ as Ng ¼ pðtdivÞN; where Ng is subscripted g in
reference to the fact that these represent “ghost visits,” un-
seen in the actually IM model. FI then can simply be calcu-
lated as FI ¼ Ftot 2 Fg; where Fg is the AFS implied by Ng:

Once we have the contribution to the AFS from the island
phase, FI; there is only one portion remaining—the contribu-
tion to the AFS from the single population, ancestral phase,
call it FA (Figure 3). To compute this, we map the state space
of the island model onto a reduced state space of a single
population model, use that mapping to fold pðtdivÞ to the
state space size, and then compute a new DTMC transition
matrix for the single population phase, changing population
size as necessary and removing migration. With the new
transition matrix we can compute the fundamental matrix
for the ancestral phase, NA; and, from that, its contribution

Figure 3 Two phases of the IM Model. Here we illustrate the two phases
of the IM model, the first of which is an island model phase, and the
second, the ancestral single population phase. To compute the expected
AFS of the IM model, we calculate the AFS contributions from each of
these phases separately, and then combine them to get our AFS from the
IM model.
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to the AFS, FA: Finally the AFS for the complete IM model,
FIM; is equal to the combined sums of the AFS contributions
from the two phases such that FIM ¼ FI þ FA:

Composite likelihood

Our goal is to calculate the probability of an observed AFS
given a set of IM parameters. To do this we use the now
familiar composite likelihood approach, treating individual
SNPs as independent observations (Adams andHudson2004;
Gutenkunst et al. 2009). We model SNPs as being drawn
from a multinomial distribution with probabilities drawn
from the joint AFS. Let x be a set of SNP frequency observa-
tions from two populations, and Q be the full set of parame-
ters from the IM model. Then, the probability of observing
our data given the parameters, i.e., the likelihood of Q is

pðxjQÞ ¼ LðQÞ}
Yn1

i¼0

Yn2

j¼0

pmij

ij : (3)

Here, the indices i and j are over the domains of the AFS, and
mij is the observed number of SNPs in i individuals in pop-
ulation 1 and j individuals in population 2. The pij terms are
the entries of the exact expected AFS calculated as described
above. Lastly, the likelihood above is proportional up to an
appropriate multinomial constant, which can be dropped
from the likelihood calculation as it does not depend on the
parameters.

Implementation

Our strategy for computing the AFS from the IM model relies
upon taking the inverse of two large, sparse matrices, corre-
sponding to functions of the transitionmatrix from theDTMC,
and exponentiating one matrix. Such calculations are ex-
tremely expensive computationally, so in our implementation
of this method we have used parallel, scalable algorithms

where ever possible. Our software package, IM_CLAM (Iso-
lationwithMigration viaComposite LikelihoodAnalysis using
Markov chains), performs these calculations with help from
two open source packages, the CSPARSE library (Davis 2006)
and the PETSc package (Balay et al. 1997, 2015a,b). In par-
ticular we use PETSc to distribute all sparse matrix calcula-
tions across a parallel compute environment that uses MPI.
For matrix inversion, we compute row by row of the inverse
matrix using a direct solver from CSPARSE and distribute
those solves across cores. The matrix exponential is calcu-
lated using the Krylov subspace method as implemented in
the SLEPc add-on to the PETSc package (Hernandez et al.
2005).

Estimation of uncertainty surrounding our point estimates
is implemented in our software package by solving for the
Godambe Information Matrix (Godambe 1960). This is done
by numerically calculating the inverse of the Hessian matrix
for the likelihood function at the joint composite likelihood
estimates of the parameters, along with a variability matrix
that examines the variance in the gradient of the likelihood
across bootstrapped samples. Uncertainty estimation via the
Godambe Information Matrix has recently been shown to be
appropriate for composite likelihood estimation, where it
replaces the more familiar Fisher Information Matrix (Varin
et al. 2011; Coffman et al. 2016).

Application to D. melanogaster data

We apply our method to recent whole genome sequencing
projects from D. melanogaster, in which multiple smaller pop-
ulation samples from a variety of African populations have
been sequenced to good depth (Pool et al. 2012; Lack et al.
2015). We obtained aligned datasets from the Drosophila
Genome Nexus resource (v1.0; Lack et al. 2015), and sub-
sequently filtered from those alignments regions that showed
strong identity-by-decent (IBD) and admixture using scripts
provided with the alignments. From these, we chose a sub-
sample of five populations with sample sizes that were small

Figure 4 Monte Carlo error in simulations of the allele frequency spec-
trum. Here, we show the decline in the mean percentage error in esti-
mates of the joint AFS from simulations, where we vary the number of
independent coalescent genealogies simulated in comparison to our ex-
act solution.

Figure 5 Percent deviation of expected AFS calculated from @a@i:
Clockwise from top left panel, we show the percent deviation of each
cell in the expected AFS for four different symmetric migration rates
m ¼ f0;1;5; 10g from @a@i vs. our exact calculation.
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enough for efficient estimation using IM_CLAM. On our com-
pute hardware, IM_CLAM estimation for samples of size
n. 9 was prohibitively slow, we thus chose the following
populations to analyze: Dobola, Ethiopia (ED; n ¼ 8), Kisoro,
Uganda (UG; n ¼ 6), Maidiguri, Nigeria (NG; n ¼ 6), Donde,
Guinea (GU; n ¼ 7), and Phalaborwa, South African (SP;
n ¼ 7). The joint AFS was then constructed for each pairwise
combination, using alignments to D. simulans and D. yakuba
to determine the derived and ancestral allele at a given SNP.
Triallelic positions were ignored. In an effort to sample the
AFS from regions of the genome that should be less likely to
affected by linked selection, we only examined intergenic
regions that were at least 5 kb away from genes, and that
did not contain simple repeats, repeat masked regions, anno-
tated transcription factor binding sites, or annotated regula-
tory elements. This yielded 5530 regions of the genome with
a total length of 4.43 Mb. For each population pair, we per-
formed three parameter optimizations from different starting
conditions, and verified that all optimizations converged to
the same estimates. For estimation of uncertainty we used
the Godambe Information Matrix calculated using 100 boot-
strap replicates from the observed AFS. Run times on 96 cores
of Xenon 2.5gz processors varied between 4 and 14 hr.

Data availability

IM_CLAM and its associated open source code are available
for download from GitHub (https://github.com/kern-lab/
im_clam).

Results

Simulation

We first set out to compare the expected AFS calculated with
IM_CLAM vs. that calculated from coalescent simulations. As
our calculations result in the exact AFS, wewere interested in
comparing the convergence of the simulated AFS to the true
AFS as a function of the number of simulations. In Figure 4,
we show the mean percentage error of the AFS computed
from simulating a given number of independent genealogies
with a small mutation rate (u ¼ 0:001) and rejection sampling

only those trees that contained SNPs. Figure 4 shows the AFS
computed using n1 ¼ n2 ¼ 6; a symmetric migration of rate
m12 ¼ m21 ¼ 1:0; and a divergence time of tdiv ¼ 0:25: As the
number of simulated genealogies increases, the mean percent-
age error between the simulated AFS and that calculated by
IM_CLAM drops quickly. However, after 106 simulations, the
amount of Monte Carlo error plateaus at �0:3%; and then
decays very slowly even after 109 simulations. Thus, brute
force simulation of the AFS seems ill advised for IM models,
as it will be computationally quite expensive to converge to
the correct distribution of allele frequencies, although approx-
imately correct calculation could be done with considerably
fewer simulations.

Wenext turnedourattention tocomparingourexactAFS to
thatcomputedbythepopular softwarepackage@a@i (Gutenkunst
et al. 2009). @a@i uses diffusion approximations to model
the joint AFS among two populations, and thus itself may be
susceptible to a certain amount of error for given parameter-
izations. We compared our exact AFS to that generated from
@a@i under a range of migration rates,m ¼ f0; 1; 5; 10g; and
having fixed population sizes to 1.0 (IM_CLAM considers
each populations size relative to the size of population 1,
where as @a@i normalizes by the size of the ancestral pop-
ulation) and tdiv ¼ 0:5: Figure 5 shows the element wise
percentage error for the @a@i approximation of this compar-
ison. @a@i harbors an appreciable amount of error under these
parameters, particular at the corners of the matrix, that repre-
sent fixed differences among populations. Thus, while @a@i
has been shown to be accurate for use in inference, we can
see here that the expected AFS produced using the diffusion
approximation still strays from the true value.

As a result of this discrepancy we set out to compare the
accuracy of inference using IM_CLAM in comparison to @a@i:
Our goal here is not to perform an exhaustive comparison
between methods, as IM_CLAM is much more limited in
scope than @a@i; however, we wish to show that our method
has utility for parameter inference as well. For this, we gen-
erated 100 replicate simulated AFS draws using coalescent
simulations in a manner as to simulate a large number of
independent SNPs. Again, we set n1 ¼ n2 ¼ 6; divergence

Figure 6 Accuracy of parameter inference using IM_CLAM and @a@i: Shown are violin plots of point estimates from 100 replicate simulations with
IM_CLAM and @a@i: Each panel uses the same migration rates, m12 ¼ m21 ¼ 1:0; but divergence time varies from left to right tdiv ¼ 0:1; 0:5; 1:0:
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time is one of tdiv ¼ 0:1; 0:5; 1:0; and either a symmetric mi-
gration regime with rates m12 ¼ m21 ¼ 1:0 or asymmetric
migration with rates m12 ¼ 1:0;m21 ¼ 0:1: We set a low
per locus u, u ¼ 0:001; and generated 106 genealogies. This
yielded �3:543 105 SNPs per simulated AFS sample. With
these simulated datasets, we then set out to infer the param-
eters of the IM model. Figure 6 and Figure 7 show a violin of
parameter estimates for both IM_CLAM and @a@i for symmet-
ric and asymmetric migration, respectively. Figures S2 and S3
in File S1 show root-mean-square error across all parameter
estimates for the point estimates. In general, both methods
are relative accurate across parameterizations; however, it
can be seen that a minority of optimizations using @a@i
yielded outlier parameter estimates. From our simulated
parameters, it seems that @a@i is most accurate at intermedi-
ate divergence times (tdiv ¼ 0:5) and does less well under the
other two divergence times simulated. In contrast, IM_CLAM
performs well over all parameters considered here. It is worth
considering that both methods are using the BFGS (Broyden-
Fletcher-Goldfarb-Shanno; Press 1985) algorithm for optimi-
zation, set with the same stopping criterion and bounds on
the parameter space explored, thus failed optimization alone
seems an unlikely explanation. Indeed, similar behavior for
@a@i was observed in an earlier report (Naduvilezhath et al.
2011).

Application to D. melanogaster data

The demographic history of D. melanogaster in many ways
mirrors that of human populations. D. melanogaster is com-
monly thought to have had its origins in sub-Saharan Africa,
and to have spread out of Africa between �10,000 and
20,000 years ago (David and Capy 1988; Lachaise et al.
1988; Begun and Aquadro 1993; Li and Stephan 2006). D.
melanogaster seems to have first migrated to Europe and Asia
via the middle east, presumably as a human commensal, and
then only much later did it arrive in North America (Lachaise
et al. 1988). While there is good genetic support for sub-
Saharan Africa to be the ancestral range of the species
(Begun and Aquadro 1993; Pool and Aquadro 2006), less is
known about the history of populations within Africa. Levels of

variation among populations do suggest that D. melanogaster
ancestrally occupied Southern Africa, and from there spread
into western and northern Africa (Pool et al. 2012). Here, we
model the demography of five African populations, represent-
ing each of the major hypothesized axes of geographic range
expansion. Using the joint AFS from each pair of these popu-
lation samples, we estimated IM model parameters using
IM_CLAM. Point estimates of pairwise population divergence
time and its associated uncertainty are summarized in Table 1,
and a UPGMA tree constructed from these population diver-
gence times is shown in Figure S4 in File S1. These estimates
are scaled in the number of individuals for population sizes,
and the number of years for divergence time, by assuming
a mutation rate per base per generation of u ¼ 5:493 1029

(Schrider et al. 2013) and 15 generations per year (Pool
2015). A complete table of parameter optimization results is
given in Table S1 in File S1.While the UPGMA tree is intended
to be heuristic, care should be taken in its interpretation as
a true, multi-population model has not been considered here,
and, instead, we have reconstructed a tree based on pairwise
divergence.

Population size estimates suggest that all sub-Saharan
African populations have experienced significant population
growth since their divergence from one another, with the
exception of Ethiopia. Population growth varies between
comparisons from 1.73 to 3.83 depending on the specific
population pair. This growth, because it is seen broadly across
populations, suggests a recent change in population size for
the species, perhaps in the last few thousand years. The ex-
ception to this trend is Ethiopia, which appears to have un-
dergone a significant bottleneck to between 0.573 and
0.833 of its ancestral size, depending on the pairwise com-
parison considered.

Estimates of divergence time point to the South African
population representing anearlier lineage split amongAfrican
melanogaster populations, with an average divergence be-
tween it and other populations of.8000 years (Figure S4 in
File S1 and Table 1). This is consistent with observations
based on population differentiation that have suggested
Southern African populations represent a possible ancestral

Figure 7 Accuracy of parameter inference using IM_CLAM and @a@i: Shown are violin plots of point estimates from 100 replicate simulations with
IM_CLAM and @a@i: Each panel uses the same migration rates, m12 ¼ 1:0;m21 ¼ 0:1; but divergence time varies from left to right tdiv ¼ 0:1;0:5;1:0:
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population (Pool et al. 2012). Our tree based reconstruction
of population divergence points to Nigeria being an outgroup
to both Eastern African populations (Uganda and Ethiopia) as
well as Guinea further to the west. The extent to which this
can be interpreted to reflect the biogeographic history of the
species in African is most likely limited due to the large levels
of gene flow we estimate between most populations below.

Finally, our results point to broad, ongoing gene flow
among African populations (Table S1 in File S1). To visualize
source-sink dynamics of gene flow among populations, we
present a circle plot of estimates of 4Nm in Figure 8. Figure
8 is scaled such that the width of each arc is proportional to
4Nm; where N is that estimated from the focal sink popula-
tion. A few general features can be gleaned from this plot.
First, Ethiopia is the least well-connected population by mi-
gration per generation among the populations considered
here. Second, South Africa is largely a sink population, rather
than being the source of outgoing migrants. Third, Uganda,
while it seems to be sending migrants to West and South
Africa, receives fewer migrants proportionally than other
populations. Lastly, Nigeria, Guinea, and Uganda seem to
be potent sources of migrants, both to one another as well
as to South Africa.

Discussion

Population genetic inference of demographic history has
become an increasingly important goal for modern genomics,
as the impacts of demography on patterns of genetic variation
is now appreciated to directly impair our ability to identify
causative disease variation via linkage (e.g., Rogers 2014), as
well as shape the genetic architecture of phenotypic variation
within populations (Lohmueller 2014; Simons et al. 2014).
Moreover, our understanding of human prehistory has been
revolutionized in recent years through demographic infer-
ence using population genetic data (e.g., Botigué et al.
2013; Ralph and Coop 2013; Raghavan et al. 2015; Poznik
et al. 2016). While that is so, methods that efficiently utilize
whole genome information for inferring rich demographic
histories, particularly multiple population histories, still lag
behind the huge availability of data (Sousa and Hey 2013).
Accordingly, much recent effort has focused on using the joint
allele frequency spectrum of samples drawn from multiple
populations as a way to summarize genome-wide data for
demographic inference (Gutenkunst et al. 2009; Lukić et al.

2011; Naduvilezhath et al. 2011; Lukić and Hey 2012;
Excoffier et al. 2013; Kamm et al. 2017).

In this study, we present a novel method for numerically
calculating the exact joint allele frequency spectrum expected
from two population Isolation with Migration models. Our
method relies upon a Markov chain representation of the
coalescent, in which the state space of the chain is the joint
AFS at a given point in time. Through the use of this state
space, in conjunctionwith standardMarkov chain techniques,
we are able to numerically calculate the exact expected AFS.
Our method stands in contrast to other popular techniques
that either use diffusion approximations (Gutenkunst et al.
2009; Lukić et al. 2011) or direct Monte carlo simulation
(Excoffier et al. 2013) to estimate the expected AFS under
a given parameterization. Indeed, as we have shown, estima-
tion of the AFS via diffusion or Monte Carlo simulation can
lead to persistent error and in some cases numerical instabil-
ity (see Kamm et al. (2017)). While we here use a Markov
chain approach to calculate the exact AFS under IM models,
a recent, elegant paper by Kamm et al. (2017) presented
analytic solutions and associated algorithms for computing
the exact AFS for multiple population models with arbitrary
population size histories, but without continuous migration.

We have implemented our approach in a software package
called IM_CLAM, which allows for inference of IM models
using genome-wide joint AFS data by computing the exact
AFS. Aswe have shown abovewith simulated data, IM_CLAM
is quite accurate in its inference of population parameters.
Application of IM_CLAM to population genomic data from
D. melanogaster populations sampled from sub-Saharan
Africa points to a complex history of population divergence
and ongoing gene flow among populations. First, we find
strong support for the notion that sub-Saharan populations,
generally, have experienced population growth in the recent
past, and have not been at equilibrium for population size
over an extended period of time. It is possible that such
growth accompanied population expansion throughout the
African continent from an ancestral range. Indeed, our find-
ing is consistent with earlier reports of population growth in
African populations based on different population samples
(Li and Stephan 2006; Sheehan and Song 2016). While this
is so, our estimates of population growth occurring in the past
few thousand years are much closer in line with what is
reported for timing from Sheehan and Song (2016) than
from Li and Stephan (2006). The single exception to popula-
tion growth, the Ethiopian sample, appears to have declined in
size since its divergence from an ancestral population. Re-
duced population size of Ethiopia is corroborated by levels of
heterozygosity observed in this population in comparison to
other sub-Saharan samples (Pool et al. 2012).

Our results on population divergence times suggest
that the South African population represents an ancient
lineage that diverged from all other populations sampled
throughout .8000 years (Figure S4 in File S1). This find-
ing supports the hypothesis that Southern Africa might be
the ancestral range of D. melanogaster, in agreement with

Table 1 Divergence time estimates from D. melanogaster
populations

SP UG ED NG GU

SP — 6375:11 6254:84 6430:50 6358:13
UG 9,257.11 — 6253:81 6525:89 6424:92
ED 5,577.46 3628.34 — 6239:69 6255:89
NG 10,582.02 8325.86 4332.84 — 61122:92
GU 9,983.12 7203.86 3939.54 8496.81 —

Values below the diagonal are point estimates of tdiv ; while above the diagonal
95% confidence intervals are given.
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observations based on genetic differentiation and levels of het-
erozygosity (Pool et al. 2012). From this ancestral range, it is
likely that the species expanded first throughout west and cen-
tral Africa, and only subsequently northward toward the horn of
Africa. Decreased population size in Ethiopia is consistent with
this scenario, suggesting a still-observable effect of a past
population bottleneck in that sample. In general, the deeper
divergence times estimated among African populations is
striking—it seems that African populations have been di-
verging from one another for quite a long period of time.
If we take at face value the biogeographic hypothesis that
D.melanogasterfirst expanded fromAfrica to Eurasia between
10,000 and 20,000 years (Lachaise et al. 1988; Stephan and
Li 2007), divergence among African populations itself is only
slightly less, mimicking to some extent the deep time popula-
tion structure now believed to occur among some sub-Saharan
human populations (e.g., Schlebusch et al. 2012).

While divergence time estimates are on the order of thousands
of years among populations, estimates of gene flow suggest high
ongoing rates of migration among many of the populations
(Figure 8). Estimates of 4Nm among populations show con-
siderable source–sink asymmetry for the South African pop-
ulation, whereby the population appears to be taking in
migrants but not sending them out. Ethiopia is also an out-
lier among sampled populations in our study for migration,
as it appears to be the least well connected node in the net-
work of geneflow through sub-Saharan Africa. Finally Nigeria,
Guinea, and Uganda each are well connected via gene flow to
each other, and, to lesser extents, to South Africa. Inasmuch,

while our estimates of population divergence suggest com-
paratively old split dates among populations, gene flow has
been a potent homogenizing force among most of our sam-
pled populations.

While the ability to compute the exact AFS under IMmodels
usingourMarkov chain approach is an advance, there aremany
shortcomings to our methodology. Perhaps most challenging is
the fact that the state space of our Markov chain grows nearly
exponentially in sample size (Figure 2). This means that our
approach is only computationally feasible for smaller sample
sizes, as, in the current state space, the transition matrix asso-
ciated with larger sample sizes will be too large to represent in
memory, even when sparse matrix representations are used as
we have done here. While this is so, the state space of the
Markov chain could potentially be reduced in size by exploiting
lumpability among states (cf. Andersen et al. 2014). Even at
moderate sizes, the computational costs of the matrix inversion
and exponentiation needed by our method are still high, thus
IM_CLAM needs tens or hundreds of CPUs for optimization
runs to complete within hours rather than days. To be applica-
ble to larger samples, the user might then proceed by taking
subsamples of theAFS, for instance, by projecting it down to the
expected AFS given a smaller sample size using a hypergeomet-
ric distribution (Nielsen et al. 2005). Additionally, our method
could be extended to calculate the composite likelihood not just
over sites, but over subsamples as well.

Despite the computational difficulties associated with the
Markovchainapproachdescribedhere,ourmethodhasopened
a new avenue in calculating the likelihoods associated with

Figure 8 Relative migration rates between populations.
Here we visualize relative rates of effective migration
(4Nm) between populations, show in units scaled by N
of the sink population. Length of the outer arc associ-
ated with each population label gives a sense of the
total flux into, and out of, each focal population.
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AFSdata, andmight be amenable toother populationgenetic
problems. For instance, in the model presented above, we
consider the two dimensions of the state space matrices to
represent different populations. It is simple to conceive of
this dimension as, instead, two separate loci with recombi-
nation acting to make transitions among the numbers of
alleles that are ancestral at one or both loci. In this way, we
have been able to write down a Markov chain that enables
calculation of the two-locus allele frequency spectrum that
itself might be useful for estimation of demographic param-
eters and recombination rates.
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Appendix

The complete state space for a sample of configuration n1 ¼ n2 ¼ 1 is given below. The ordering of states shown is arbitrary but
identical to the one used in the example Markov chain transition matrix in the Model section of the paper.

A0 ¼
�
0 0
1 0

��
0 1
0 0

�

A1 ¼
�
0 0
0 0

��
0 1
1 0

�

A2 ¼
�
0 1
0 0

��
0 0
1 0

�

A3 ¼
�
0 1
1 0

��
0 0
0 0

�

A4 ¼
�
0 0
0 1

��
0 0
0 0

�

A5 ¼
�
0 0
0 0

��
0 0
0 1

�

The next most simple state space is that for a sample of configuration n1 ¼ 2; n2 ¼ 1 This is referred to above in the Model
section of the paper to illustrate the calculation of transition probabilities of the Markov chain. The complete state space in this
case, call it B, is given here
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