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a b s t r a c t

A major challenge in the analysis of population genomics data consists of isolating signatures of
natural selection from background noise caused by random drift and gene flow. Analyses of massive
amounts of data from many related populations require high-performance algorithms to determine
the likelihood of different demographic scenarios that could have shaped the observed neutral single
nucleotide polymorphism (SNP) allele frequency spectrum. Inmany areas of appliedmathematics, Fourier
Transforms and Spectral Methods are firmly established tools to analyze spectra of signals and model
their dynamics as solutions of certain Partial Differential Equations (PDEs). When spectral methods are
applicable, they have excellent error properties and are the fastest possible in high dimension; see Press
et al. (2007). In this paper we present an explicit numerical solution, using spectral methods, to the
forward Kolmogorov equations for a Wright–Fisher process with migration of K populations, influx of
mutations, and multiple population splitting events.

© 2011 Elsevier Inc. All rights reserved.
1. Introduction

Natural selection is the force that drives the fixation of advanta-
geous phenotypic traits, and represses the increase in frequency of
deleterious ones. The growing amount of genome-wide sequence
and polymorphism data motivates the development of new tools
for the study of natural selection. Distinguishing between genuine
selection and the effect of demographic history, such as gene-flow
and population bottlenecks, on genetic variation presents a major
technical challenge. A traditional population genetics approach to
the problem focuses on computing neutral allele frequency spectra
to infer signatures of natural selection as deviations from neutral-
ity. Diffusion theory provides a set of classical techniques to predict
such frequency spectra (Gutenkunst et al., 2009; Williamson et al.,
2005; Evans et al., 2007), while the connection between diffusion
and the theory of Partial Differential Equations (PDEs) allows for
borrowingwell established high-performance algorithms from ap-
plied mathematics.

The theory of predicting the frequency spectrum under
irreversible mutation was developed by Fisher, Wright and
Kimura (Fisher, 1930; Wright, 1931; Kimura, 1964). In particu-
lar Kimura (1969) noted that this theory was applicable to many
nucleotide positions and introduced the infinite sites model. The
joint frequency spectra of neutral alleles can be obtained from the
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coalescent model (Wakeley and Hey, 1997) or byMonte Carlo sim-
ulations (Hudson, 2002). The analysis in terms of diffusion theory is
mathematically simpler and can incorporate natural selection eas-
ily (Gutenkunst et al., 2009; Williamson et al., 2005; Evans et al.,
2007). In this paper, we model the demographic history of K dif-
ferent populations that are descended by K − 1 population split-
ting events from a common ancestral population. The populations
evolve with gene exchange under an infinite sites mutationmodel.
We introduce a powerful numerical scheme to solve the associ-
ated forward diffusion equations. After introducing a regularized
discretization of the problem, we show how spectral methods are
applied to compute theoretical Non-Equilibrium Frequency Spec-
tra.

The introduction of spectral methods is usually attributed
to Orszag (1969), although they are based on older precursors,
such as finite element methods, and Ritz methods in quantum
mechanics (Ritz, 1909). The basic idea consists of using finite
truncations of expansions by complete bases of functions to
approximate the solutions of a PDE. This truncation allows
the transformation of a diffusion PDE into a finite system of
Ordinary Differential Equations (ODEs). The motivation to use
these methods relies on their excellent error properties, and their
high speed. In general, they are the preferred methods when
the dimension of the domain is high (Press et al., 2007), and the
solutions to the PDE are smooth. This is because the number of
basis functions that one needs to approximate the solutions of
a PDE is much lower than the number of grid-points that one
needs in a finite difference scheme, working at the same level of
accuracy (Gottlieb and Orszag, 1977).

http://dx.doi.org/10.1016/j.tpb.2011.02.003
http://www.elsevier.com/locate/tpb
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mailto:lukic@biology.rutgers.edu
http://dx.doi.org/10.1016/j.tpb.2011.02.003
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As we show in this paper, the convergence of spectral methods
depends on the smoothness of the solutions to be approximated.
In many situations, solutions to diffusion equations have good
analytical properties, and spectral methods can be applied.
However, the application of these methods to the problem that
interests us here requires a proper discretization of the problem.
Influx of mutations, population splitting events and boundary
conditions have to be properly regularized before one applies these
methods and exploits their high-performance properties.

1.1. Non-equilibrium frequency spectra

The K -dimensional Allele Frequency Spectrum (AFS) summa-
rizes the joint allele frequencies in K populations. We distinguish
between the AFS, which consists of the unknown distribution of
allele frequencies in K natural populations, and observations of the
AFS. Given DNA sequence data frommultiple individuals in K pop-
ulations, the resulting observation of the AFS is a K -dimensional
matrix with the allele counts (for a complete discussion on this
see Wakeley and Hey (1997)). Each entry of the matrix consists of
the number of diallelic polymorphisms in which the derived allele
was found. In other words, each entry of the AFS matrix is the ob-
served number of derived alleles, ja, found in the corresponding
number of samples, na, from population a (1 ≤ a ≤ K ).

The full AFS is the real distribution of joint allele frequencies
at the time when the samples were collected. If the total number
of diploid individuals in the ath-population is Na ≫ na, the
natural allele frequencies x1 = i1/(2N1), x2 = i2/(2N2), . . . , xk =

iK/(2NK ) (with ia the total number of derived polymorphisms in
the ath population) can be seen as points in the K -dimensional
cube [0, 1]K . Thus, given the frequencies of every diallelic
polymorphism (which we indexed by r) xr1, x

r
2, . . . , x

r
K , the AFS can

be expressed as the probability density function

φ(x) =
1
S

S−
r=1

δ(x1 − xr1)δ(x2 − xr2) . . . δ(xK − xrK ). (1.1)

Here, S is the total number of diallelic polymorphisms segregating
in the K populations, and δ( ) is the Dirac delta function.

Our goal is to determine this AFS under the infinite sites model.
Any demographic scenario in the model is defined through a
population tree topology T , such as in Fig. 1, and a set of parameters
that specify the effective population sizes Ne,a, splitting times tA,
and migration rates mab at different times. Hence, 2Ne,amab is
defined as the number of haploid genomes that the population a
receives from b per generation. For simplicity, we refer to the set
of parameters that specify a unique demographic scenario asΘ .

Thus, given a population tree topology and a choice of
parameters, we will compute theoretical densities of derived joint
allele frequencies as functions on [0, 1]K of the type

φ(x|Θ, T )

=

Λ−1−
i1=0

Λ−1−
i2=0

. . .

Λ−1−
iK=0

αi1,i2,...,iK (Θ, T )Ri1(x1)Ri2(x2) . . . RiK (xK ),(1.2)

with Λ a truncation parameter, {Ri(x)}∞i=0 a complete basis of
functions on the Hilbert space L2[0, 1] to be defined below,
and αi1...iK the coefficients associated with the projection of
φ(x|Θ, T ) onto the basis spanned by {Ri1(x)Ri2(x) . . . RiK (x)}. These
continuous densities relate to the expectation of an observation of
the AFS via standard binomial sampling formulae

p(j1, . . . , jK |n1, . . . , nK )

=

∫
[0,1]K

φ(x|Θ, T )
K∏

a=1

na!

(na − ja)!ja!
xjaa (1 − xa)na−jadxa. (1.3)
Fig. 1. A graphical representation of a model for the demographic history of three
populations.

Using Eq. (1.3) we can compare model and data, for instance, by
means of maximum likelihood.

The major goals of this paper are two-fold. First, we present
the finite Markov chain and diffusion approximation, associated
with the infinite sites model used to compute neutral allele
spectra. A special emphasis is made on the boundary conditions
and the influx of mutations, because of their potential singular
behavior. Second, we introduce spectral methods and showhow to
transform thediffusion equations into coupled systemsofOrdinary
Differential Equations (ODEs) that can be integrated numerically.
In particular, we introduce a set of techniques to handle population
splitting events, mutations and boundary interactions, that protect
the numerical setup against Gibbs phenomena.1 Adetailed analysis
of the stability of the methods as a function of the model
parameters, and the control of the numerical error, are included
at the end of the paper.

2. Finite Markov chain model

The evolutionary dynamics of diallelic SNP frequencies in a
randomly-mating diploid population can bemodeled using a finite
Markov chain, with discrete time t representing non-overlapping
generations. For simplicity, we consider first one population with
N diploid individuals, and laterwill extend the results tomore than
one population.

The state of the Markov chain at time t is described by the
vector fj(t), with 1 ≤ j ≤ 2N . Each entry, fj(t), consists of the
expected number of loci at which the derived state is found on
j chromosomes. Therefore,

∑2N−1
j=1 fj(t) is the expected number

of polymorphic loci segregating in the population at time t , and
f2N(t) is the expected number of loci fixed for the derived state.
The model assumes that the total number of sites per individual
is so large, and the mutation rate per site so low, that whenever
a mutation appears, it always does so on a previously homoallelic
site (Kimura, 1969).

The vector fj(t), is also called the density of states. Under
the assumption of free recombination between loci and constant

1 Gibbs phenomena are numerical instabilities that arisewhen the error between
a function and its truncated polynomial approximation is large.
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Fig. 2. One unit of time transition in a finite Markov chain.

mutation rate, the time evolution of fj(t) under random drift and
mutation influx is described by the difference equations

fj(t + 1) =

2N−
i=1

P(j|i)fi(t)+ µj(t), 1 ≤ j ≤ 2N. (2.1)

In its simplest form, one assumes that the alleles in generation
t + 1 are derived by sampling with replacement from the alleles
in generation t . Therefore, the transition coefficients in the chain
Eq. (2.1) are

P(j|i) =


2N
j


(i/(2N))j{1 − (i/(2N))}2N−j. (2.2)

This describes stochastic changes in the state after a discrete
generation, Fig. 2. The second term in Eq. (2.1) represents the influx
of polymorphisms. Mutations are responsible for the creation of
new polymorphisms in the population. The influx of mutations
depends on the expected number of sites 2Nν, in which new
mutations appear in the population each generation2. If we assume
that at each generation, every new mutation is found in just one
chromosome, then

µj(t) = 2Nνδ1,j, (2.3)

for the mutation alone (Evans et al., 2007). The term δi,j in Eq. (2.3)
is the Kronecker symbol, with δ1,j = 1 if j = 1 and δ1,j = 0
otherwise.

2.1. Effective mutation densities

In applications of the infinite sites model, one usually finds
that the census population size and the effective population size
that drives random drift in Eq. (2.2) are not the same (Kimura,
1969). For this reason, we distinguish between Ne, the effective
population size that defines the variance of the Wright–Fisher
process in Eq. (2.2), and the census population size N that can
be used to define the allele frequencies x = i/(2N). Therefore,
the smallest frequency, x = 1/(2N), with which new mutations
enter populations will be sensitive to small stochastic fluctuations
in the census population size, even if the effective population size

2 The expected number of sites 2Nν, relates to the expected number ofmutations
per base 2Nu, by the total length L of the genomic sequence under study in units of
base pairs, ν = u × L. Sometimes in this paper, in an abuse of notation we do not
distinguish between ν and u, and they are seen as the same quantity expressedwith
different units.
remains constant. This is important when we take the diffusion
limit of Eq. (2.1), and the stochastic process is described by the
continuous variable x = j/(2N), rather than the integer j. If we
consider a constant census population size, the term Eq. (2.3) in
the Markov chain is substituted by

δ1,j → δ(x − 1/(2N)), (2.4)

in the diffusion limit. However, if the census population size
per generation is a stochastic variable distributed as F(N)dN , the
diffusion limit of the mutation term will be

δ1,j → µ(x) =

∫
∞

0
δ(x − 1/(2N))F(N)dN. (2.5)

We expect that µ(x) will have some general properties, indepen-
dent of the particular characteristics of F(N)dN . For instance, in
many realistic scenarios µ(x)will be a function that is nearly zero
for frequencies x > x∗, with x∗ = 1/(2Nmin) a very small char-
acteristic frequency associated with the inverse of the minimum
census population size.

Other phenomena that might not be properly captured by
the simple mutational model in Eqs. (2.3) and (2.4), consist of
organisms with partially overlapping generations, and organisms
in which mutations in gametes arise from somatic mutations.
When an organism has a mating pattern that violates the
assumption of non-overlapping generations (e.g. humans), the
generation time in the model equation (2.2) is interpreted as an
average generation time. Hence, during a generation unit, there is
time enough for some individuals to be bornwith newmutations at
the beginning of the generation time, and to reproduce themselves
by the end of a generation unit. This implies that after one average
generation, there can exist new identical mutations in more than
one chromosome. Similarly, when the gametes of an organism
originate from somatic tissue, they inherit de novo mutations that
arose in the soma after multiple cell divisions. If the individuals
of this organism can have more than one offspring per generation,
one expects to find the same new mutation, in the same site, in
more than one chromosome per generation.

Because of these different biological phenomena, we believe
that the notion of effective mutation density,µ(x), is a more general
way to describe mutations in natural populations. The effective
mutation density describes the average frequency distribution of
newmutations per generation, in one population, after taking into
account the effects due to stochastic changes in census population
size, non-overlapping generations and/or mutations of somatic
origin. Fromanumerical point of view, effectivemutation densities
are a useful tool to avoid the numerical instabilities associated
with polynomial expansions of non-smooth functions (e.g. Dirac
deltas) that appear in the standard approaches to mutation influx.
As we show later when we discuss the continuous limit of the
infinite sitesmodel, different effectivemutation densities can yield
predictions which are identical to predictions of models based on
Eq. (2.4).

2.2. More than one population

Here,we showhow to incorporate arbitrarilymore populations,
and the migration flow between them. Generally, for the state in
the chain we consider a discrete random variable X⃗ which takes
values in the K -dimensional lattice of derived allele frequencies:

X⃗ =


i1/(2N1)
i2/(2N2)

...
iK/(2NK )

 , (2.6)
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with K the number of populations, and 0 ≤ ia ≤ 2Na. For
simplicity, we use a single index notation, 0 ≤ I ≤

∏
a 2Na, to label

the states where the random variable X⃗ takes values. The random
variable X⃗ = I jumps to the state X⃗ = J at a discrete generation
unit, with prescribed probability P(J|I). The density of states in this
multi-population setup is fI(t), and the difference equations that
describe its dynamics are equivalent to Eq. (2.1). The transition
matrix P̂ = P(J|I) incorporates random drift and migration events
between populations. New mutations enter each population with
an effective mutation vector µ⃗

µ⃗ =


0
...
µa

j
...
0

 ; (2.7)

in the standard model, the mutation density is µa
j = 2Naνδ1,j.

The Markov chain for a Wright–Fisher process for two
independent populations is defined by the transition matrix

P̂j1j2;i1 i2 = Bi(j1; 2Ne,1, i1/(2Ne,1))Bi(j2; 2Ne,2, i2/(2Ne,2)), (2.8)
where Bi(j; k, p) stands for the binomial distribution with index
k and parameter p. Also, we can introduce migration between
populations, by sampling a constant number of alleles nab in
population a that become part of the allele pool in population b.
Thus, in a model of two populations with migration, one considers
the transition matrix

P̂j1j2;i1 i2 =

k1=n21,k2=n12−
k1,k2=0

Bi(j1 − k1; 2Ne,1

− n21, i1/(2Ne,1))Bi(k1; n21, i2/(2Ne,2))

× Bi(j2 − k2; 2Ne,2

− n12, i2/(2Ne,2))Bi(k2; n12, i1/(2Ne,1)). (2.9)
In this model the parameter space is given by the effective
population sizes Ne,1 and Ne,2, and the scaled migration rates n21
and n12. This process is generalizable to an arbitrary number of
populations in a straightforward way.

3. Diffusion approximation

Diffusion approximations to finite Markov chains have a
distinguished history in population genetics, dating back toWright
and Fisher. This approach can be used to describe the time
evolution of derived allele frequencies in several populations, with
relatively large population sizes. This approximation applies when
the population sizes Na are large (if Ne > 50, the binomial
distributionwith index 2Ne can be accurately approximated by the
Gaussian distribution used in the diffusion limit) and migration
rates are of the order 1/Ne.

In the large population size limit, the state space spanned by
vectors such as Eq. (2.6) converges to the continuous space [0, 1]K .
The density of states fI(t) on the state space will converge to a
continuous densityφ(x, t) on [0, 1]K . The time evolution ofφ(x, t)
depends on how the inifinitesimal change δX⃗ ,

X⃗(t + δt) = X⃗(t)+ δX⃗,

is distributed. If the mean of the δX⃗ distribution isM(X⃗, t) and the
covariance matrix is C(X⃗, t), the time continuous limit δt → 0+ of
the process X⃗(t) is well defined. In the small, but finite, limit of δt
the stochastic process obeys the equation

X⃗(t + δt) = X⃗(t)+ M(X⃗, t)δt + σ(X⃗, t)ϵ⃗
√
δt, (3.1)

where ϵ⃗ is a standard normal random variable (with zero mean
and unit covariance matrix) in RK , σ(X⃗, t) is a square root of the
covariance matrix C(X⃗, t) = σσ T (X⃗, t), and δt is a finite, but very
small, time step.

In the diffusion approximation to the discrete Markov chain,
the process is described as a time continuous stochastic process
governed by Gaussian jumps of prescribed variance and mean.
These processes can be denoted using the notation of stochastic
differential equations:

dXa
t = Ma(Xt , t)dt +

K−
b=1

σ ab(Xt , t)dW b
t , (3.2)

where dW b is the infinitesimal element of noise given by standard
Brownianmotion in K -dimensions, and σ is the square rootmatrix
of the covariance matrix C = σσ T , (Shreve, 2004). The diffusion
generator associated with Eq. (3.2) is

L =

K−
a=1

Ma(x, t)
∂

∂xa
+

1
2

K−
b=1

Cab(x, t)
∂2

∂xa∂xb
. (3.3)

Thus, if φ(x, t = 0) is the density of allele frequencies at time
0, the time evolution of φ(x, t) will be governed by the forward
Kolmogorov equation

∂φ(x, t)
∂t

=

K−
a,b=1

1
2

∂2

∂xa∂xb
[Cab(x, t)φ(x, t)]

−

K−
a=1

∂

∂xa
[Ma(x, t)φ(x, t)] + ρ(x, t). (3.4)

Here, ρ(x, t) is the continuous limit ofµj in Eq. (2.1), that describes
the net influx of polymorphisms in the population per generation.

3.0.1. Modeling migration flow and random drift

The continuous limit of theMarkov chain defined in Eq. (2.9), in
the case of K diploid populations and in the weak migration limit,
has as associated moments

Ma(x, t) =

−
b

mab(xb − xa), (3.5)

Cab(x, t) = δab
xa(1 − xa)

2Ne,a
, (3.6)

with δab the Kronecker delta (δab = 1 if a = b and δab = 0
otherwise). The matrix element mab = nab/(2Na) defines the
migration rate from the bth population to the ath population.

Thus, associated with this process one has the Kolmogorov
forward equations
∂

∂t
φ(x, t) =

−
a,b

1
2

∂2

∂xa∂xb


δab

xa(1 − xa)
2Ne,a

φ(x, t)


−
∂

∂xa
(mab(xb − xa)φ(x, t))+ ρ(x, t). (3.7)

Eq. (3.7) describes the time evolution of the frequency spectrum
density under random drift and migration events between
populations, given an initial density and absorbing boundary
conditions (see below). The inhomogenous term ρ(x, t) models
the total incoming/outgoing flow of SNPs per generation into
the K -cube which is not due to the diffusion flow, ja =

−Maφ + ∂b(Cabφ), at the boundary. This total flow depends on
mutation events that generate de novo SNPs: inflow from higher
dimensional components of the allele density (see below), inflow
frommigration events from lower dimensional components of the
allele density, and the outflow of migration events towards higher
dimensional components. If there is no positive influx of SNPs, the
density would converge to φ(x, t) → 0 as t → ∞. In order to
understand the probability flow between different components of
the density of alleles, we will have to study how the boundary
conditions are defined precisely.
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Fig. 3. Decomposition of the singular probability density, for three populations,
on the three-dimensional bulk and the different sub-dimensional boundary
components.

3.1. Boundary conditions

Understanding the boundary conditions in this problem is one
of the most challenging tasks. In Kimura’s famous solution to the
problemof pure randomdrift in one population, (Kimura, 1955), he
required the solutions to the diffusion equation to be finite at the
boundaries x = 0 and x = 1. This boundary condition is absorbing.
The points x = 0 and x = 1 describe states where SNPs reach the
fixation of their ancestral or derived states.

If we consider K populations, the natural generalization of
Kimura’s boundary conditions can be derived by studying the
possible stochastic histories of single diallelic SNPs segregating in
the K populations. An SNP which is initially polymorphic in all the
K populations can reach the fixation of its derived or ancestral state
in one population while still being polymorphic in the remaining
K − 1 populations. More generally, an SNP can be polymorphic in
K − α populations, while its state can be fixated in the remaining
α populations. A convenient way of visualizing this is to look at
the geometry of the K -cube of allele frequencies, and the different
sub-dimensional components of its boundary (see examples Figs. 3
and 4 for the 2-cube and 3-cube). A K -cube’s boundary can be
decomposed as a set of cubes of lower dimensionality, from
(K − 1)-cubes up to 0-cubes or points. The number of boundary
components of codimension α, i.e. the number of (K − α)-cubes,
contained in the boundary of the K -cube is

#(K − α)cubes =
2αK !

(K − α)!α!
. (3.8)

The most important set of boundary components are the
(K − 1)-cubes, because any other boundary component can be
expressed as the intersection of a finite number of (K − 1)-cubes
at the boundary. We identify each 2K codimension-one boundary
component by the populationwhere the SNPs are not polymorphic,
and by the state that is fixated in this population (Derived or
Ancestral). For example, the component (i, A) is defined as the set
of points in the K -cube that obeys the equation xi = 0, and the
component (i,D) is defined by the equation xi = 1. Therefore,
any codimension α boundary component can be expressed as the
intersection

(i1S1) ∩ (i2S2) ∩ · · · (iαSα) = {x ∈ [0, 1]K |xi1
= δS1,D; xi2 = δS2,D; . . . ; xiα = δSα ,D}, (3.9)

with iα ≠ iβ when α ≠ β , δS,D = 1 for the derived state S = D,
and δS,D = 0 for the ancestral state S = A.
Fig. 4. Decomposition of the singular probability density, for two populations,
on the two-dimensional bulk and the different sub-dimensional boundary
components.

To each boundary component of codimension α we associate a
(K − α)-dimensional density of derived allele frequencies that are
polymorphic only on the corresponding K − α populations, while
are fixated in the other α populations. In this way, φ(0) denotes the
bulk probability density, {φ(i,Si)}i=K

i=1 (with the state Si being either
ancestral Si = A or derived Si = D) are the 2K codimension-
one densities, {φ(i,Si;j,Sj)}i≠j the codimension 2 densities, etc. This
decomposition is illustrated in the case of 2 and 3 populations in
Figs. 3 and 4.

In this notation, we write the density of derived alleles
segregating on K populations as the generalized probability
function

φ(x, t) = φ(0)(x, t)+

K−
i=1


φ(i,A)(x, t)δ(xi)

+φ(i,D)(x, t)δ(xi − 1)


+

K−
i=1,j≠i


φ(i,A;j,A)(x, t)δ(xi)δ(xj)

+φ(i,A;j,D)(x, t)δ(xi)δ(xj − 1)

+φ(i,D;j,D)(x, t)δ(xi − 1)δ(xj − 1)


+

K−
i=1,j≠i,k≠i,k≠j

. . . (3.10)

with δ(·) the Dirac delta-function. The points (1, A) ∩ (2, A) ∩

· · · (K , A) and (1, D) ∩ (2, D) ∩ · · · (K , D) are the universal
fixation boundaries, and they do not contribute to the total density
of alleles in Eq. (3.10). It is useful to write the probability density
φ(x, t) using such decomposition, because despite being a singular
generalized function, each boundary component φ(i,S1;j,S2,...)(x, t)
will be, most of the time, a regular analytic function.

The dynamics of the boundary components φ(i1,S1;i2,S2,...)(x, t)
are governed by diffusion equations, with an inhomogenous term,
of the type

∂

∂t
φ(i1,S1;i2,S2,...)(x, t) =

−
a,b≠i1,i2...

1
2

∂2

∂xa∂xb

×


δab

xa(1 − xa)
2Ne,a

φ(i1,S1;i2,S2,...)(x, t)


−
∂

∂xa


mab(xb − xa)φ(i1,S1;i2,S2,...)(x, t)


+ ρ(i1,S1;i2,S2,...)(x, t), (3.11)



208 S. Lukić et al. / Theoretical Population Biology 79 (2011) 203–219
with ρ(i1,S1;i2,S2,...)(x, t) the net incoming/outgoing flow into the
boundary component (i1, S1) ∩ (i2, S2) ∩ . . .. The ρ term can be
interpreted as an interaction term between different boundary
components.

More precisely, ρ(i1,S1;i2,S2;...)(x, t) consists of four terms

ρ(i1,S1;i2,S2;...;iα ,Sα)(x, t) = ρmut(x, t)+ ρdrift(x, t)

+ ρinm(x, t)+ ρoutm(x, t). (3.12)

ρmut(x, t) is the influx of spontaneous mutations (only present in
codimension K − 1), ρdrift(x, t) consists of the boundary inflow
from codimension α− 1 components that have (i1, S1)∩ (i2, S2)∩
· · · ∩ (iα, Sα) as a boundary component, ρinm(x, t) represents the
incoming flow due to migration events from lower dimensional
boundary components, and ρoutm(x, t) is the outflow due to
migration events from (i1, S1)∩(i2, S2)∩· · · (iα, Sα) towards higher
dimensional components that have (i1, S1) ∩ (i2, S2) ∩ · · · (iα, Sα)
as a boundary component.

We can write in a more precise way each term in ρ(i1,S1;i2,S2,...)
(x, t), as follows:

• ρmut :

ρ
(i1,S1;i2,S2;...;iα ,Sα)
mut (x, t)

=

−
a

2Ne,auδα,K−1µ(xa)
α∏

j=1

(1 − δij,a), (3.13)

with δα,K−1 = 1 if α = K − 1, δα,K−1 = 0 if α ≠ K − 1, and
µ(xa) is the mutation density (in the classical theory, µ(xa) =

δ(xa − 1/(2Ne,a))).
• ρdrift : Assuming that the first derivatives of φ(x, t) are finite at

the boundary,

ρ
(i1,S1;i2,S2;...;iα ,Sα)
drift (x, t)

=

iα−
jα=i1

−
a


δSjα ,A

 1
4Ne,a

−

−
b

mabxb


+ δSjα ,D

 1
4Ne,a

−

−
b

mab(1 − xb)


×φ(j1,S1;j2,S2;...;jα−1,Sα−1)(xjα = δSjα ,D, x, t), (3.14)

where the sum over jα is over all components of codimension
α − 1 that have (i1, S1) ∩ (i2, S2) ∩ · · · (iα, Sα) as a boundary
component. δSjα ,A is 1 when Sjα = A and 0 when Sjα = D;
similarly δSjα ,D is one when Sjα = D and zero when Sjα =

A. The sum over a and b is over all populations that are not
j1, j2, . . . , jα .

• ρinm : Here, and throughout, cα is a shorthand for the boundary
component (i1, S1; i2, S2; . . . ; iα, Sα). ρ

(cα)
inm (x, t) represents the

total incoming flow due to migration events of SNPs that are
contained in densities of SNPs located at boundary components
of cα . If Bd(cα) is the set of boundary components of cα with
fixed codimension d (α < d ≤ K ),

Bd = {(i1, S1; i2, S2; . . . ; iα, Sα; jα+1, Sα+1; . . . jd, Sd)}jα+1,...,jd ,

then ρ(cα)inm (x, t) can be written as the sum of contributions from
all boundary components in Bd, for all codimensions d = α +

1, α + 2, . . . , K , and for all possible migration events from
elements q in Bd(cα) to cα:

ρ
(bcα)
inm (x, t) =

K−
d=α+1

−
q∈Bd

φ(q)(x, t)

×

 −
e∈Γ (q→cα)

p(e)
d∏

k=α+1

δ(xik − f eik)


. (3.15)
Here,Γ (q → cα) is the set of all possiblemigration events from
SNPs in φ(q) to φ(cα), p(e) denotes the probability of occurrence
of the migration event e, and 0 < f ei ∈ cα denotes the expected
frequency, in the ith-population, of an SNP that enters cα after
the event e. We provide below a more precise description of
Eq. (3.15), such as a description of the event space Γ (q →

cα), the corresponding probabilities of occurrence and expected
frequencies.

• ρoutm : Denotes the outflow of SNPs due to migration events
to higher dimensional boundary components. In other words,
ρ
(cα)
outm measures the rate of loss of SNPs in φ(cα), because of

migration flow towards boundary components of codimension
d < α, that have cα as a boundary component. Let I∂q,cα
be a discrete function that returns 1 when cα is a boundary
component of q, and zero when it is not. Thus,

ρ
(cα)
outm(x, t) = −φ(cα)(x, t)

×

α−1−
d=0

−
q∈Bd

I∂q,cα

 −
e∈Γ (cα→q)

p(e)


. (3.16)

To compute Eqs. (3.15) and (3.16), the use of approximations is
unavoidable. In principle, one could use the transition probabilities
of the finite Markov chain to estimate the probabilities of different
migration events and their expected allele frequencies. However,
there is a simpler approximation, which is consistent with the
weak migration limit in which the diffusion equation is derived.

This approximation follows from the observation that at the
boundary xa = δS,D, the strength of random drift along the
population a vanishes (xa(1−xa) = 0), and hence, the infinitesimal
change in xa obeys a deterministic equation:

dxa
dt

=

−
b

δS,Amabxb − δS,Dmab(1 − xb). (3.17)

Eq. (3.17) implies that a migration event from several populations
b, to a target population a, can push the frequency xa of an SNP out
of the boundary where it was initially fixated (xa = δS,D).

Therefore, given a K -cube, a boundary component cα (of
codimension α), and a boundary component q (of codimension
β > α) of cα , we say that there will exist migration flow from q
to cα , if and only if

dxat
dt

=

K−
b=1

δSat ,Amatbxb − δSat ,Dmatb(1 − xb) ≠ 0, (3.18)

dxn
dt

=

K−
b=1

δSn,Amnbxb − δSn,Dmnb(1 − xb) = 0, (3.19)

where {xn}αn=1 denote the allele frequencies of SNPs which are
fixated at the boundary components cα and q, {at}Kat=α+1 are the
populations at cα whose allele frequencies are polymorphic, and
the frequencies xb are defined at the boundary component q (which
means that xb is polymorphic as long as b > β , and is δSb,D
otherwise). It is important to realize that xb can be 0 or 1 at q, and
a migration event to cα can still bring alleles of the opposite state
that is fixated in the target population.

In this approximation, Γ (q → cα) consists of a single element,
and p(e) can be zero or one. If Eqs. (3.18) and (3.19) are satisfied,
the migration event in Γ (q → cα) has probability p(e) = 1, and
the expected frequencies are

fat =

K−
b=1

δSat ,Amatbxb − δSat ,Dmatb(1 − xb). (3.20)

If Eqs. (3.18) and (3.19) are not satisfied, p(e) = 0, and we say that
there is not migration flow from q to cα .
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Fig. 5. A model for a stochastic census population size, with exponential decay in
the small population size limit, a quadratic decay∼N−2 in the large population size
limit, and a population peak at N = 1000.

3.2. Effective mutation densities

Given a constant spontaneous mutation rate in the species
under study, of u ‘‘base substitutions per site and per generation’’,
and expected number of sites ν = L × u where new mutations
appear in the population each generation, the total number of
de novo mutant sites that appear in the population a, every
generation, is 2Ne,aν. We can model this constant influx of
mutations by adding a Dirac delta term

2Ne,aνδ(xa − 1/(2Ne,a)), (3.21)

to the K diffusion equations that govern the ancestral components
of codimension K − 1φ(i1 A)∩(i2 A)∩···(iK−1 A)(x, t). However, as we
discussed above, more generally we work with an effective
mutation density

2Ne,aνµ(xa). (3.22)

As a particular example of an effective mutation density, we
consider a stochastic census population size, which is a random
variable distributed as

F(N)dN =
c

2N2
exp(−κ/(2N))dN. (3.23)

This distribution avoids extremely small populations by an
exponential tail, while large population sizes are distributed as
∼ N−2, as shown in Fig. 5. In this model, we keep constant the
effective population size Ne that defines the variance of random
drift in Eq. (3.6). Thus, the mutation density will be

µ(x) =

∫
∞

0
δ(x − 1/2M)

c
2M2

exp(−κ/2M)dM. (3.24)

We can integrate Eq. (3.24) exactly, by making the change of
variables y = 1/2M , dM = −dy/2y2:

µ(x) = c exp(−κx). (3.25)

3.3. Population splitting events

So farwehave studied how the allele frequency density changes
as a function of time while the number of populations K remains
constant. When two populations split, the diffusion jumps to
dimension K +1, and the corresponding density will obey the time
evolution defined by Eq. (3.7) for K + 1 populations, with different
population sizes and migration parameters. The initial density
φK+1(x, xK+1, t) in the K + 1 diffusion problem is determined
from the density φK (x, t), before the populations split. Therefore,
if population K + 1 was formed by Nf ,a migrant founders from the
ath population, then

φK+1(x, xK+1, t)

= φK (x, t)


Nf ,a

πxa(1 − xa)
e−Nf ,a(xa−xK+1)

2/(xa(1−xa)). (3.26)

This formula is derived by considering the binomial sampling of
2Nf ,a chromosomes from population a, and using the Gaussian
approximation for the binomial distribution with 2Nf ,a degrees
of freedom and parameter xa. In the limit Nf ,a → ∞, Eq. (3.26)
simplifies to

φK+1(x, xK+1, t) = φK (x, t)δ(xa − xK+1), (3.27)

with δ(x) the Dirac delta. Additionally, if the new population
is formed by migrants from two populations merging, with a
proportion f from population i and 1 − f from population b, then

φK+1(x, xK+1, t) = φK (x, t)δ(fxa + (1 − f )xb − xK+1). (3.28)

In the diffusion framework, one can also deal with populations
that go extinct or become completely isolated. More precisely, if
we remove the ath population, the initial density in the K − 1
dimensional problem will be

φK−1(x̃, t) =

∫
[0,1]

φK (x, t)dxa, (3.29)

with x̃ denoting the vector x̃ = (x1, x2, . . . , xa−1, xa+1, . . . xK ).

4. Solution to the diffusion equations using spectral methods

The idea behind spectral methods consists of borrowing
analytical methods from the theory of Hilbert spaces to transform
a partial differential equation, such as Eq. (3.7), into an ordinary
differential equation that can be integrated numerically using, for
instance, a Runge–Kutta method.

In general, the problems in which we are interested are mixed
initial-boundary value problems of the form

∂φ(x, t)
∂t

= LFP(x, t)φ(x, t)+ ρ(x, t), x ∈ D = [0, 1]K , (4.1)

B(x)φ(x, t) = 0, x ∈ ∂D, t > 0, (4.2)
φ(x, 0) = g(x), x ∈ D, (4.3)

where D = [0, 1]K is the frequency spectrum domain with
boundary ∂D, LFP(x, t) is a linear differential operator also known
as the Fokker–Planck operator, ρ(x, t) is a function, and B(x) is the
linear boundary operator that defines the boundary condition. In
this paper, we are interested in the particular set of PDEs defined
in Eq. (3.7), although we sometimes keep the notation of Eq. (4.1)
as a shorthand.

We assume that φ(x, t) is for all t an element of a Hilbert
space H of square integrable functions, and associated L2-product
⟨ , ⟩L2 . Furthermore, we assume that all functions in H satisfy the
boundary conditions imposed by Eq. (4.2). In spectral methods we
consider a complete orthogonal basis of functions for H , that we
denote by {ψi(x)}∞i=0, which obeys

⟨ψi, ψj⟩L2 = hiδij, (4.4)

with hi a function of i that depends on the particular choice of
basis functions. One then approximates φ(x, t) as the truncated
expansion

PΛφ(x, t) =

Λ−1−
i=0

αi(t)ψi(x). (4.5)
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Similarly, one approximates the PDE in Eq. (4.1) by projecting it
onto the finite dimensional basis {ψi(x)}Λ−1

i=0 , as

∂

∂t
PΛφ(x, t) = PΛLFP(x, t)PΛφ(x, t)+ PΛρ(x, t). (4.6)

By HΛ we denote the finite dimensional space spanned by
{ψi(x)}Λ−1

i=0 , and by PΛ the corresponding projector H → HΛ. If

PΛLFP(x, t)PΛφ(x, t) =

Λ−1−
i,j=0

ωij(t)ψi(x)αj(t)

PΛρ(x, t) =

Λ−1−
i=0

βiψi(x),

we can re-write the ODE in Eq. (4.6) using just modal variables as

∂αi(t)
∂t

=

Λ−1−
j=0

ωij(t)αj(t)+ βi. (4.7)

One can solve Eq. (4.7) by discretizing the time variable t , and using
a standard numerical method to integrate ODEs. Therefore, the
spectral solution to the diffusion PDE is expressed in the form of a
truncated expansion, like Eq. (4.5), and has coefficients determined
by the integral of Eq. (4.7).

There are many different ways to construct sequences of
approximating spacesHΛ that converge toH in the limitΛ → ∞,
when the domain is the K -cube. Here, we follow other authors’
preferred choice (Gottlieb and Orszag, 1977), and choose the basis
of Chebyshev polynomials of the first kind. In the following section
we introduce Chebyshev expansions and show why they are a
preferred choice.

4.1. Approximation of functions by Chebyshev expansions

Let {Ti(x)}∞i=0 be the basis of Chebyshev polynomials of the first
kind. They are the set of eigenfunctions that solve the singular
Sturm–Liouville problem

d
dx


1 − x2

dTi(x)
dx


+

i2
√
1 − x2

Ti(x) = 0, (4.8)

with i = 0, 1, . . . ,∞, and −1 ≤ x ≤ 1. {Ti(x)}∞n=0 are orthogonal
under the L2-product with weight functionw(x) = 1/

√
1 − x2:∫

[−1,1]
Ti(x)Tj(x)

dx
√
1 − x2

=
πci
2
δij, (4.9)

where c0 = 2 and ci>0 = 1. This basis of polynomials is a
natural basis for the approximation of functions on a finite interval
because the associated Gauss–Chebyshev quadrature formulae
have an exact closed form, the evaluation of the polynomials is
very efficient, and the convergence properties of the Chebyshev
expansions are excellent (Gottlieb and Orszag, 1977).

The Chebyshev polynomials of the first kind can be evaluated
by using trigonometric functions, because of the identity Ti(x) =

cos(i arccos(x)). The derivatives of the basis functions can be
computed by utilizing the recursion

Ti(x) = −
1

2(i − 1)
T ′

i (x)+
1

2(i + 1)
T ′

i (x), (4.10)

to express the derivative as

T ′

i (x) =

i−1−
j=0|j+i odd

1
cj
Tj(x). (4.11)
Similar formulae can be found for higher derivatives. The
coefficients in the expansion

PΛf (x) =

Λ−1−
i=0

aiTi(x), (4.12)

can be calculated by using the orthogonality relations of the basis
functions

ai =
2
πci

∫ 1

−1
f (x)Ti(x)

dx
√
1 − x2

. (4.13)

However, a direct evaluation of the continuous inner product,
Eq. (4.13), can be a source of considerable problems, as in the case
of the Fourier series. The classical solution lies in the introduction
of a Gauss quadrature of the form

2
πci

∫ 1

−1
f (x)Ti(x)

dx
√
1 − x2

≃
2
ciQ

Q−
k=1

f (xk)Ti(xk),

xk = cos

2k − 1
2Q

π


. (4.14)

If f (x) is smooth enough, the finite sum over Q grid points
in Eq. (4.14) will converge quicker than O(Q−1) to the exact
formula (Press et al., 2007). As Eq. (4.14) is equivalent to a discrete
Fourier cosine transform, general results on the convergence of
cosine transforms apply also to this problem. One can see this
relationship by considering the change of variables x = cos y:

2
πci

∫ 1

−1
f (x)Ti(x)

dx
√
1 − x2

=
2
πci

∫ π

0
f (cos y) cos(iy)dy, (4.15)

and choosingQ equally spaced abscissas in the interval 0 ≤ y ≤ π ,
2
πci

∫ π

0
f (cos y) cos(iy)dy

≃
2
πci

π

Q

Q−
k=1

f
[
cos


2k − 1
2Q

π

]
cos


i
2k − 1
2Q

π


. (4.16)

In order to study the convergence properties of the Chebyshev
expansions Eq. (4.12), we exploit the rich analytical structure of the
Chebyshev polynomials. By using the identity equation (4.8), one
can re-write Eq. (4.13) as

ai = −
2

πcii2

∫ 1

−1
f (x)

d
dx

[
1 − x2

dTi(x)
dx

]
dx. (4.17)

If f (x) is C1([−1, 1]) (i.e., if its first derivative is continuous), we
can twice integrate by parts Eq. (4.17) to obtain

ai = −
2

πcii2

∫ 1

−1


1 − x2

d
dx

[
1 − x2

df (x)
dx

]
Ti(x)

√
1 − x2

dx. (4.18)

We can repeat this process as many times as f (x) is differentiable;
thus, if f (x) ∈ C2q−1([−1, 1]) then

ai = −
2

πcii2q

∫ 1

−1

[
1 − x2

d
dx


1 − x2

d
dx

q

f (x)
]

× Ti(x)
dx

√
1 − x2

. (4.19)

If we use the truncation error

‖f (x)− PΛf (x)‖L2 =

∫ 1

−1

f (x)−

Λ−1−
i=0

aiTi(x)


2

dx
√
1 − x2

1/2

=


∞−
i=Λ

|ai|2
1/2

(4.20)
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as a measure of convergence of the Chebyshev expansion, we
may estimate its asymptotic expansion by calculating the rate of
decrease of ai. But as we showed in Eq. (4.19), |ai| =

c(q)
i2q

, for some
constant c(q) if f (x) ∈ C2q−1([−1, 1]). Therefore, for large Λ the
error decreases as a power law

‖f (x)− PΛf (x)‖L2 =


∞−
i=Λ

|ai|2
1/2

≤
c

Λ2q−1
, (4.21)

and if the function is infinitely differentiable (q = ∞), the
corresponding Chebyshev series expansion will converge faster
than any power of 1/Λ.

In the applications of this paper we will work with re-scaled
Chebyshev polynomials. As the Allele Frequency Spectrum is
defined on the interval [0, 1], or direct products of it, we re-scale
the Chebyshev polynomials to obtain an orthonormal basis on
[0, 1]. More precisely, the basis that we use is {Ri(x) = αiTi((1 −

x)/2)}∞i=0 with x ∈ [0, 1], α0 = 1/
√
π , αi>0 =

√
2/

√
π , L2-

product:

⟨f , g⟩ =

∫
[0,1]

f (x)g(x)
dx

√
x(1 − x)

, (4.22)

and orthonormality relations,∫
[0,1]

Ri(x)Rj(x)
dx

√
x(1 − x)

= δij. (4.23)

4.1.1. High-dimensional domains and spectral approximations of
functional spaces

The joint site frequency spectrum of K populations can be
defined as a density on [0, 1]K . A natural basis of functions on the
Hilbert space L2w([0, 1]

K ), comes from the tensor product of one-
dimensional functions. More particularly, we consider the tensor
product of Chebyshev polynomials

ψi1,i2,...iK (x) = Ri1(x1)Ri2(x2) · · · RiK (xK ), (4.24)

because L2w([0, 1]
K ) = L2w([0, 1])⊗· · ·⊗L2w([0, 1]). Therefore, any

square integrable function F(x) under the L2-product

⟨F(x),G(x)⟩w =

∫
[0,1]K

F(x)G(x)
K∏

a=1

dxa
√
xa(1 − xa)

, (4.25)

can be approximated as multi-dimensional Chebyshev expansion

F(x) =

Λ1−1−
i1=0

Λ2−1−
i2=0

· · ·

ΛK−1−
iK=0

αi1,i2,...iK Ri1(x1)Ri2(x2) · · · RiK (xK ). (4.26)

The truncation parameters Λ1, Λ2 . . . can be fixed depending on
the analytical properties of the set of functions that one wants to
approximate and their corresponding truncation errors. There al-
ways exists a trade-off between the accuracy of the approxima-
tion (the higher the Λ the more accurate the approximation) and
the speed of the implementation of the algorithm (the lower the
Λ, the faster the algorithm); therefore, choosing different values
of Λi will yield more optimal implementations of the algorithm.
Here, for simplicity in the notation, we use a unique truncation pa-
rameterΛ = Λ1 = · · · = ΛK .

4.2. Diffusion operators in modal variables

In order to approximate the PDEs defined in Eq. (3.7) by a
system of ODEs in the modal Chebyshev variables such as Eq. (4.7),
we need to project the Fokker–Planck operator in the Chebyshev
basis spanned by Eq. (4.24). Later onwewill showhow to dealwith
the influx of mutations specified by the Dirac deltas.
A direct projection of the Fokker–Planck operator onto the
Chebyshev basis spanned by Eq. (4.24), would require storing
the coefficients in a huge matrix with Λ2K matrix elements.
Fortunately, the Fokker–Planck operator in our problem is very
simple, and its non-trivial information can be stored in just four
sparseΛ×Λmatrices. First, we need the random drift matrix

Dij =
1
2

∫ 1

0
Ri(x)

d2

dx2

x(1 − x)Rj(x)

 dx
√
x(1 − x)

, (4.27)

and then, the three matrices needed to reconstruct the migration
term

Gij =

∫ 1

0
Ri(x)xRj(x)

dx
√
x(1 − x)

, (4.28)

Hij =

∫ 1

0
Ri(x)

dRj(x)
dx

dx
√
x(1 − x)

, (4.29)

Jij =

∫ 1

0
Ri(x)x

dRj(x)
dx

dx
√
x(1 − x)

. (4.30)

The matrix elements in Eqs. (4.27)–(4.30) can be quickly
determined bymeans of the Gauss–Chebyshev quadrature defined
in Eq. (4.14). Due to the properties of the Chebyshev polynomials
many matrix elements vanish. More particularly, Dij and Jij are
upper triangular matrices (i.e., Dij = Jij = 0 if i > j), Hij = 0 if
i ≥ j, and Gij = 0 if i > j+ 1 or i < j− 1. Thus, the total number of
non-trivial matrix elements that we need to compute, for a given
Λ, is just 3

2Λ
2

+
7
2Λ − 2. This is much smaller than the default

number of matrix elements (i.e.,Λ2K ).
Finally, the ΛK

× ΛK matrix elements of the corresponding ω
matrix in Eq. (4.7) can be easily recovered from the tensor product
structure of the ΛK -dimensional vector space that defines the
Chebyshev expansion (as in Eq. (4.26)). Thus, ωi1...iP ,j1...jK =−

a

1
2Ne,a

Dia,ja −

−
a,b

mab

Hia,jaGib,jb − δia,jaδib,jb − Jia,jaδib,jb


,

(4.31)

with δij = 1, if i = j, and δij = 0 if i ≠ j.

4.3. Influx of mutations

The inhomogeneous terms in Eq. (3.7) that model the influx of
mutations are given by effective mutation densities. As we show
in the appendices, a model of mutations given by an exponential
distributionwill give the same results, up to an exponentially small
deviation, as a standard model with a Dirac delta. The motivation
for using smooth effective mutation densities is that they are
better approximated by truncated Chebyshev expansions. As we
briefly explained in the review on Chebyshev polynomials and its
truncated expansions, the convergence of a truncated expansion
depends strongly on the analytical properties of the function
to be approximated. As Dirac deltas are not smooth functions,
their truncated Chebyshev expansions present bad convergence
properties. This is related to the problem of Gibbs phenomena, and
wewill give amore detailed account of its origin below (see Sources
of error and limits of numerical methods).

In this paper, we only consider a positive influx of mutations in
boundary components of dimension one. In order to approximate
the behavior under a mutation term given by a Dirac delta, an
effective mutation density µ(x) has to satisfy the following:

• The truncation error is bounded below the established param-
eter, ϵ, for the control of error; i.e., ‖µ(x)− PΛµ(x)‖L2 < ϵ.

• The expected frequency of the mass mutation-function is
Eµ(x) =

1
2Ne

.
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• The mutation-function is nearly zero for relatively large
frequencies (e.g., x > 0.05), and it is as peaked as possible near
x = 1/(2Ne).

While the first and third qualitative requirements are straight-
forward, the second numerical condition is not. One can interpret
this requirement as equivalent to fixing the neutral fixation rate
to be u, because the probability that an allele at frequency x = p
reaches fixation at x = 1 is p. Thus, the average number of new
mutants that reach fixation per generation is 2Neu × Eµ(x) = u.
This constraint can also be derived by studying the properties of
the equilibrium density associated with this stochastic process. At
equilibrium, the density φe(x) of derived alleles obeys

1
4Ne

d2ψ
dx2

= −2Neuµ(x), (4.32)

with ψ(x) = x(1 − x)φe(x). Therefore, the expected frequency of
the mass mutation-function can be computed as∫ 1

0
xµ(x)dx = −

1
8N2

e u

∫ 1

0
x
d2ψ
dx2

dx. (4.33)

Using the identity x d2ψ
dx2

=
d
dx


x dψ

dx


−

dψ
dx one can rewrite Eq. (4.33)

as∫ 1

0
xµ(x)dx = −

1
8N2

e u
dψ
dx
(x = 1). (4.34)

On the other hand, the probability flux associated with the
equilibrium density of alleles at the boundary x = 1 is j(1) =

−
1

4Ne
ψ ′(1). We use this to write the expected frequency of the

mutation density as:∫ 1

0
xµ(x)dx =

1
2Neu

j(1). (4.35)

In neutral evolution the probability flux at the boundary x = 1
equals the fixation rate, which satisfies j(1) = u. Therefore, Eq.
(4.35) has to satisfy∫ 1

0
xµ(x)dx =

1
2Neu

j(1) =
1

2Neu
u =

1
2Ne

, (4.36)

which is what we wanted to show.
Numerical experiments show that for a large class of functions

µ(x), and in the frequency range x > x∗, the associated solutions
to the different diffusion problems are identical (up to a very small
deviation) to the standard model with a Dirac delta. x∗ is a very
small frequency that depends on the choice of µ(x), and generally
can be made arbitrarily small. It is in the region of the frequency
space with 0 ≤ x ≤ x∗, where the behavior of the different
diffusion problems can deviate most.

The truncation error in the Chebyshev expansion depends on
the smoothness of the function, and the choice of truncation
parameter (see Fig. 6 for an example). For the effective mutation
density µ(x), we use the exponential function

µ(x) =
1

2Ne
×

κ2

1 − exp(−κ)− κ exp(−κ)
exp(−κx), (4.37)

where the values for κ(Λ, ϵ) ≫ 1 are determined by saturating
the bound on error: ‖µ(x)− PΛµ(x)‖L2 < ϵ.
4.3.1. Comparison of different mutation models at equilibrium
We derive in the Appendix A the associated equilibrium

distributions of derived alleles. For a model with a mutation
density given by a Dirac delta, one finds the equilibrium density

φe(x) =
4Ne(2Ne − 1)ux − 8N2

e u(x − 1/(2Ne))θ(x − 1/(2Ne))

x(1 − x)
,

(4.38)

with θ(y) the Heaviside step function (θ(y) = 0 for y < 0,
θ(y) = 1/2 for y = 0, and θ(y) = 1 for y > 0). Which in the
region x > 1/(2Ne) simplifies to

φe(x) =
4Neu
x
. (4.39)

In the case of µ2(x) = c exp(−κx), the corresponding equilibrium
density is given in Box I.

Therefore, a pairwise comparison of both equilibrium densities
shows that the deviation from both models when x > x∗ = κ−1 is
exponentially small when equilibrium is reached (see Fig. 7). We
can show that the same is true in non-equilibrium.

4.3.2. Non-equilibrium dynamics with effective mutation densities
Here, we show how the non-equilibrium dynamics of a

diffusion systemunder an exponential distributionmutation influx
is the same (up to an exponentially small deviation) as a system
where mutations enter the population through the standard Dirac
delta δ(x − 1/(2Ne)), as long as the allele frequencies are bigger
than a certain minimum frequency x∗. Below x∗ the dynamics will
be sensitive to differences in the mutation densities.

Let ϕ(x) be an arbitrary initial density of alleles. Let φ1(x, t)
be the solution to the diffusion equations under pure random
drift and a mutation influx given by δ(x − 1/(2Ne)). φ2(x, t) is
the solution of the diffusion equations under pure random drift
and mutation influx given by the exponential effective mutation
density equation (4.37). In Appendix B, we prove the following
identity in the large t limit∫ 1

0
|φ1(x, t)− φ2(x, t)|x(1 − x)dx

=
4Neu
κ
(1 − exp(−t/(2Ne)))+ O(exp(−κ)), (4.41)

with φ1(x, 0) = φ2(x, 0) = ϕ, and κ ≤ 2Ne. If we normalize
Eq. (4.41) by

lim
t→∞

∫ 1

0
|φ1(x, t)|x(1 − x)dx,

the normalized deviation of φ2(x, t) from φ1(x, t) is, for large t , 1
0 |φ1(x, t)− φ2(x, t)|x(1 − x)dx

lim
t→∞

 1
0 |φ1(x, t)|x(1 − x)dx

=
2
κ
(1 − exp(−t/(2Ne)))

+O(e−κ ,N−1
e ). (4.42)

We can also show, by applying the Minkowski inequality to
Eq. (B.10) in Appendix B, that 1
0 |φ1(x, t)− φ2(x, t)|x(1 − x)dx

lim
t→∞

 1
0 |φ1(x, t)|x(1 − x)dx

≤
2
κ
(1 + exp(−t/(2Ne)))

+O(e−κ ,N−1
e ), (4.43)

for all t > 0. This means that the deviation is bounded by O(κ−1)
for all t , and therefore the non-equilibrium dynamics of φ1(x, t)
and φ2(x, t) are identical in the large κ limit.
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Fig. 6. On the left, we show the plot of five different truncated Chebyshev expansions for a Gaussian peaked at x = 0.5 and σ = 0.03. On the right, we show the truncation
error of different Chebyshev expansions (with Λ = 3, 6, 10 and 15) of a family of Gaussian functions peaked at x = 0.5 and parametrized by the standard deviation
0.01 ≤ σ ≤ 0.5.
0)
φe(x) =
4Neu(1 − x)+

8N2
e uc
κ


exp(−κ)(1 + 1/κ)− exp(−κ)x −

1
κ
exp(−κx)


x(1 − x)

(4.4

Box I.
Fig. 7. Three comparisons of the equilibrium densities associated with the exponential mutation density (blue) for several values of κ vs. the equilibrium density associated
with the Dirac delta mutational model (red). For illustrative purposes, the population size used was N = 10, 000 and the spontaneous mutation rate is u = 10−6 . On the
left the equilibrium density associated with the exponential distribution with κ = 10 is shown, in the middle κ = 20, and on the right κ = 40. For a truncation parameter
Λ = 20, one can choose mutation densities with κ up to 43, while keeping the truncation error below sensible limits. (For interpretation of the references to colour in this
figure legend, the reader is referred to the web version of this article.)
As |φ1(x, 0) − φ2(x, 0)| = 0 at time zero and the deviation of
φ2(x, t) from φ1(x, t) attains equilibrium in the large t limit, we
can study the frequency dependence of such deviation by looking
at the equilibrium

lim
t→∞

φ1(x, t)− φ2(x, t) =
4Neue−κx

x(1 − x)
+ O(e−κ). (4.44)

Here, the O(e−κ) term exactly cancels the singularity at x = 1 and
the deviation decays exponentially as a function of the frequency.
This shows that for frequencies x > x∗ = κ−1

≥ 1/(2Ne)

the dynamics of a model with mutation influx given by a Dirac
delta is the same, up to an exponentially small deviation, as the
non-equilibrium dynamics of a model with exponential mutation
density.

4.4. Branching-off of populations

Modeling a population splitting event also involves the use
of Dirac deltas, as in Eq. (3.27), or peaked functions such as
Eq. (3.26), whose truncated Chebyshev expansions may present
bad convergence properties. These Gibbs-like phenomena can be
dealt with in a similar way as we did with the mutation term of
Eq. (3.7).
We implemented two different solutions to this problem and
both solutions yielded similar results. First, we constructed a
smoothed approximation of the Dirac delta by using Gaussian
functions:

δ̃(xa − xK+1) =
1

w(xa)
exp


−
(xa − xK+1)

2

2σ(xa)2


, (4.45)

with

w(xa) =

∫ 1

0
exp


−
(xa − xK+1)

2

2σ(xa)2


dxK+1, (4.46)

and σ(xa) as a standard deviation which is chosen as small as
possiblewhile preserving the bound on error, ‖δ̃(xa−x)−PΛδ̃(xa−
x)‖L2[0≤x≤1] < ϵ, for any value of xa ∈ [0, 1]. In order to map the
δ̃-function in Eq. (4.45) to a truncated Chebyshev expansion,

PΛδ̃(xa − xK+1) =

Λ−1−
i=0

Λ−1−
j=0

∆ijRi(xa)Rj(xK+1), (4.47)

one has to perform a Gauss–Chebyshev quadrature in 2 dimen-
sions, 0 ≤ xa ≤ 1, 0 ≤ xK+1 ≤ 1:

∆ij =

∫ 1

0

∫ 1

0
δ̃(xa − x)Ri(xa)Rj(x)

dxa
√
xa(1 − xa)

dx
√
x(1 − x)

. (4.48)
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Fig. 8. Diffusion under pure random drift acts by smoothing out the initial density
at t = 0. Herewe shownumerical solutions to the diffusion equationswithΛ = 28,
at 5 different times, with initial condition φ(x, t = 0) = δ(x− 0.3). As time passes,
the numerical solution approaches the exact solution more quickly, and the Gibbs
phenomena disappear.

The second approach exploits the analytical behavior of
diffusion under pure random drift (i.e., with no migration). By
Kimura’s solution to the diffusion PDE in terms of the Gegenbauer
polynomials {Gi(z)}, see Kimura (1955), we know that the time
evolution of 1-d density is

PΛφ(x, t) =

Λ−1−
i=0

2(i + 1)+ 1
(i + 1)(i + 2)

(1 − r2)Gi(r)Gi(z)

× exp(−(i + 1)(i + 2)t/4N), (4.49)

with r = 1 − 2p, z = 1 − 2x and φ(x, 0) = δ(x − p). Thus, in the
exact solution to the diffusion equation, the time evolution of the
coefficients of degree i in the Gegenbauer expansion is described
by the term exp(−(i + 1)(i + 2)t/4N). This means that diffusion
smooths out the Dirac delta at initial time. Fig. 8 represents the
evolution of the density at different times.

Thus, we can use diffusion under pure random drift to smooth
out the density introduced after the population splitting event.
Let φK (x, t) be the density before the splitting and let a be the
population from which population K + 1 is founded. We initially
consider the density

φK+1(x, xK+1, t ′ = 0) = φK (x, t)δ(xa − xK+1). (4.50)

The associated Chebyshev expansion PΛφK+1(x, xK+1, t) will
present Gibbs-phenomena. However, by diffusing for a short time
τ under pure random drift

∂

∂t
φK+1(x, xK+1, t)

=

K+1−
b=1

1
2
∂2

∂x2b


xb(1 − xb)

2Sb
φK+1(x, xK+1, t)


, (4.51)

(with Sa = SK+1 = W , Sb = V for K + 1 ≠ b ≠ a, and V ≫ W ),
φK+1(x, xK+1, τ ) becomes tractable under Chebyshev expansions.
In other words, by choosing τ such that the error bound is satisfied

‖φK+1(x, xK+1, τ )− PΛφK+1(x, xK+1, τ )‖L2 < ϵ,

we obtain a smooth density after the population splitting event
which can follow the regular diffusionwithmigration prescribed in
the problem, and approximate accurately the branching-off event.
In some limits this approximation can fail, though we leave the
corresponding analysis for the next section.

Here, we do not consider the numerical solution to the problem
of splitting with admixture, although we are confident that it
should be possible to solve along similar arguments.
4.5. Sources of error and limits of numerical methods

There are two major sources of error in these numerical
methods. First, the solution of the diffusion equation is itself a time-
continuous approximation to the time evolution of a probability
density evolving under a discrete Markov chain. Hence, whenever
the diffusion approximation fails, its numerical implementation
will also fail. Secondly, a numerical solution by means of spectral
expansions involves an approximation of the infinite dimensional
space of functions on a domain by a finite dimensional space
generated by bases of orthonormal functions under certain L2-
product. As we show below, under a broad set of conditions the
numerical solution will converge accurately to the exact solution;
otherwise, the numerical solution can fail to approximate the
exact solution. A third source of error appears because one has
to discretize time in order to integrate the high-dimensional ODE
that approximates the PDE. Fortunately, this source of error can
be ignored because the diffusion generators yield a stable time
evolution.

We summarize below the main conditions that have to be
satisfied in order to obtain high-quality numerical solutions to the
PDEs studied in this work.

4.5.1. Limits of diffusion equations
In the diffusion approximation to aMarkov chain, the transition

probability is approximated by a Gaussian distribution (Ewens,
2004). Here, we review the derivation of the diffusion equation as
the continuous limit of a Markov chain, in order to emphasize the
assumptionsmade and determine the limits of this approximation.

Given a Markov process defined by a discrete state space S,
transition matrices p(I|J), initial value K ∈ S and discrete time
τ = 0, 1, . . ., the probability that the state will be at I at time τ is
f (I|K , τ ), where f (I|K , τ ) obeys the recurrence relation

f (I|K , τ ) =

−
J∈S

p(I|J)f (J|K , τ − 1). (4.52)

In the diffusion approximation one considers a sequence of discrete
state spaces {Sλ}λ∈Z+

such that in the limit λ → ∞ the state space
S∞ converges to a smooth manifold (in practical applications, a
compact domain D ⊂ RK ).

In this paper, we take Sλ to be [0, λ]K , and S∞ ∼ [0, 1]K .
Therefore, the state variables can be re-scaled as Ka/λ = xa, with
a = 1, . . . , K and Ka ∈ [0, λ]K . Similarly, we introduce the time
variable t = τ/λ. In the large λ limit, the transition probability for
the change of the state from time τ/λ to time (τ+1)/λ is governed
by a distribution with moments

E(δxa | x) = Ma(x)/λ+ O(1/λ2), (4.53)

E(δxaδxb | x)− E(δxa | x)E(δxb | x) = Cab(x)/λ+ O(1/λ2), (4.54)

E(δx3a | x) = O(1/λ2). (4.55)

In this continuous limit, the equation that describes the time
evolution of the Markov chain in Eq. (4.52) can be written as
a forward Kolmogorov equation if we neglect terms of order
O(1/λ2). However, ifMa(x) is proportional to λ, the O(1/λ2) terms
in Eq. (4.53) cannot be neglected and the diffusion approximation
will not be valid. As in this paper we take λ = 2Ne, and Ma(x)
proportional to themigration ratesmab, if themigration rates obey
2Ne,amab ≤ O(1) the diffusion approximation will be valid. Indeed,
computer experiments show that the numerical solutions become
unstable and yield incorrect results if this bound is violated. This
limit precisely defines when two populations can be considered
the same (Hey, 2010). Therefore, in cases when 2Ne,amab ≫ O(1),
we can consider populations a and b as two parts of the same
population. Another assumption in the diffusion approximation
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is that a binomial distribution with 2Ne,a degrees of freedom
can be approximated by a Gaussian distribution. This will be a
valid approximation as long as Ne,a is large enough. Numerical
experiments show that the approximation is accurate if Ne,a >
100; otherwise, effects due to the finiteness of the Markov chain
cannot be neglected and the approximation will fail.

4.5.2. Limits of spectral expansions
Spectral methods, as with any numerical scheme for solving

PDEs, require several assumptions about the behavior of the
solution of the PDE. The most important one is that one can
approximate the solution as a series of smooth basis functions,

PΛφ(x, t) =

Λ−1−
i1=0

· · ·

Λ−1−
iP=0

αi1,i2,...,iP (t)Ti1(x1)Ti2(x2) . . . TiP (xP).

(4.56)

In other words, the projection of the solution PΛφ(x, t) is
assumed to approximateφ(x, t)well in some appropriate norm for
sufficiently large Λ. As one has to choose finite values for Λ, Eq.
(4.56) will sometimes fail to approximate correctly the solution of
the PDE.

In the applications of this paper, the basis of functions that we
use consist of the Chebyshev polynomials of the first kind.3 Below
we provide bound estimates for the truncation error ‖PΛφ(x, t)−
φ(x, t)‖L2[−1,1]K , to understand the quality of the approximate
solutions for different values of Λ, (see also Gottlieb and Orszag
(1977) and Canuto et al. (1988) for different choices of basis
functions).

More precisely, as the L2 inner product and norm in the
Chebyshev problem are:

⟨f , g⟩L2[−1,1]K =

∫
[−1,1]K

f (x)g(x)
K∏

i=1

dxi
1 − x2i

, (4.57)

and

‖f ‖2
L2[−1,1]K =

∫
[−1,1]K

|f (x)|2
K∏

i=1

dxi
1 − x2i

, (4.58)

the terms in the expansion Eq. (4.56) can be computed by
performing inner products

αi1,i2,...,iK (t) =


2
π

K ∫
[−1,1]K

φ(x, t)Ti1(x1)Ti2(x2) . . . TiK (xK )

×

K∏
j=1

dxj

cij

1 − x2j

, (4.59)

with c0 = 2 and cj = 1 (j > 0). A consequence of the orthogonality
of the basis functions is that the squared truncation error admits a
simple formulation in terms of the coefficients in the expansion:

‖PΛφ(x, t)− φ(x, t)‖2
L2[−1,1]K

=


2
π

K −
i1≥Λ

· · ·

−
iK≥Λ

|αi1,i2,...iK (t)|
2. (4.60)

3 One can work either with the basis of functions {Ti(x)} on x ∈ [−1, 1], or
with the re-scaled basis {Ri(x)} defined on x ∈ [0, 1], by performing a simple scale
transformation.
Thus, the truncation error depends only on the decay of the higher
modes |αi1,i2,...iK | in the expansion. On the other hand, the decay of
these higher modes depends on the analytical properties of φ(x, t)
itself. For instance, ifφ(x, t) ∈ C2q1−1,2q2−1,...,2qK−1([−1, 1]K ), i.e. if

∂

∂x1

2q1−1 
∂

∂x2

2q2−1

. . .


∂

∂xK

2qK−1

φ(x, t)


L2[−1,1]K

< ∞, (4.61)

we can integrate by parts Eq. (4.59), as we did in Eq. (4.18), to write
the decay of each mode as

|αi1,i2,...iK (t)| =


2
π

K

∫

[−1,1]K


K∏

j=1


1 − x2j

∂

∂xj

2qj
φ(x, t)



×
Ti1(x1)

ci1 i
2q1
1


1 − x21

dx1 · · ·
TiK (xK )

ciK i
2qK
K


1 − x2K

dxK

. (4.62)

Eq. (4.62) implies that the truncation error is directly related to the
smoothness of φ(x, t); it follows that we can bound the truncation
error as a function ofΛ:

‖PΛφ(x, t)− φ(x, t)‖L2[−1,1]K

≤ C(q)Λ
−
∑
j
qj
 K∏

j=1

[
1 − x2j

∂

∂xj

]qj
φ(x, t)


L2[−1,1]K

. (4.63)

Another convenient measure of smoothness is the Sobolev norm:

‖Φ(x)‖2
Wq1,...,qK [−1,1]K

=

q1−
s1=0

· · ·

qK−
sP=0

 K∏
j=1


∂

∂xj

sj
Φ(x)


L2[−1,1]K

; (4.64)

in terms of the Sobolev norm, the truncation error is bounded as

‖PΛφ(x, t)− φ(x, t)‖L2[−1,1]K

≤ CΛ
−
∑
j
qj

‖φ(x, t)‖Wq1,...,qK [−1,1]K . (4.65)

A corollary of Eq. (4.65) is that if φ(x, t) is smooth, PΛφ(x, t)
converges to φ(x, t) more rapidly than any finite power of Λ−1.
This is indeed the basic property that has given its name to spectral
methods.

In the absence of influx of polymorphisms in the populations,
the time evolution of the density obeys pure diffusion, and there-
fore |αi1,i2,...iK (t)| → 0 when t → ∞ as it follows from Eq. (4.49).
This means that diffusion acts as a smoothing operator on
the initial density. Empirically, we find that in the presence
of influx of polymorphisms the density can also be approxi-
mated by spectral expansions and the truncation error remains
low.

After two populations split and the K -dimensional diffusion
becomes a K + 1 dimensional process, the K + 1 dimensional
density becomes a distribution concentrated in the linear subspace
of [−1, 1]K+1 defined by xa = xa+1 (with a and a + 1
labeling the two daughter populations that just split). Such density
has an infinite Sobolev norm and cannot be represented as a
finite sum of polynomials. Fortunately, the diffusion generator
acts on the density by smoothing it out and by bringing the
density to a density with finite Sobolev norm. The main variables
involved in this process are: the time difference between the
current splitting event and the next one, TA+1 − TA, and
the effective population sizes Ne,a and Ne,a+1 of the daughter
populations. Therefore, depending on the choice of the truncation
parameter Λ, a minimum diffusion time tm(Ne,a,Ne,a+1,Λ) will
be necessary to bring the truncation error within desired limits
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‖PΛφ(x, tm) − φ(x, tm)‖L2 ≤ ϵ. Here, ϵ is the control parameter
on numerical error. Therefore, the bigger the largest effective
population size of the two daughter populations, the bigger
will be such minimum diffusion time. If the time difference
between the current splitting event and the next one is bigger
than

tm(Ne,a,Ne,a+1,Λ) = C(Λ)max(Ne,a,Ne,a+1), (4.66)

(where C(Λ) is a function that can be computed numerically),
the resulting numerical error will stay below the desired limits.
As our model aims to reproduce the real SNP Allele Frequency
Spectrum density there should exist low error approximations of
such density (that we denote as γ̂ (x)) in terms of polynomial
expansions. Otherwise, the methods here presented will fail
to solve the problem. This can only happen if γ̂ (x) is so
rugged, i.e. the corresponding Sobolev norm is so high, that
the largest finite choice for Λ that we can implement in our
computer-code is not large enough to approximate accurately
γ̂ (x):

‖PΛmax γ̂ (x)− γ̂ (x)‖L2[−1,1]K ∼ CΛ
−
∑
j
qj

max
γ̂ (x)Wq1,...,qK [−1,1]K

≫ ϵ. (4.67)

In case that Eq. (4.67) is obeyed, it is likely that 2 or more
populations are so closely related that we can treat them as if they
were one identical population. If we reduce the dimensionality
of the problem in this way (by only incorporating differentiated
populations), the correlationswill disappear and the Sobolev norm
of γ̂ ′(x) will be such that we will be able to find a sensible
parameter Λ to approximate γ̂ ′(x) as a truncated Chebyshev
expansion.

5. Conclusion

In this paper we have introduced a forward diffusion model
of the joint allele frequency spectra, and a numerical method
to solve the associated PDEs. Our approach is inspired by
recent work in which similar models were proposed (Williamson
et al., 2005; Evans et al., 2007; Gutenkunst et al., 2009).
Analogously, our methods are quite general and can accommodate
selection coefficients and time dependent effective population
sizes.

The major novelties of the model here presented with respect
to previous work are:

• The introduction of spectral methods/finite elements in the
context of forward diffusion equations and infinite sitesmodels.
Traditionally, these techniques yield better results than finite
differences schemes when the dimension of the domain is high
(i.e., when the final number of populations is high), and the
solutions are smooth. A comparison of our implementation
using spectral methods, and previous implementations using
finite differences (Gutenkunst et al., 2009), will be the matter
of future work.

• A set of boundary conditions that deals with the possibility
that some polymorphisms reach fixation in some populations
while remaining polymorphic in other populations. When the
differences in effective population sizes between different
populations are large, this phenomenon can become very
important. Here, we have introduced a solution to address
this possible scenario. Previous work imposed zero flux at
the boundaries (Gutenkunst et al., 2009), and hence avoided
the fixation of polymorphisms in some populations while
remaining polymorphic in the rest.

• The introduction of effective mutation densities, which gener-
alize previous models for the influx of mutations (Evans et al.,
2007).We have emphasized how different ways to inject muta-
tions at very low frequencies converge to the same solution for
larger frequencies.

The non-equilibrium theory of Allele Frequency Spectra is
of primary importance to analyze population genomics data.
Although it does not make use of information about haplotype
structure or linkage non-equilibrium, the analysis of AFS allows
the study of demographic history and the inference of natural
selection. In this work, we have extended the diffusion theory
of the multi-population AFS, to accommodate spectral methods,
a general framework for the influx of mutations, and non-trivial
boundary interactions.
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Appendix A. Comparison of mutational models at equilibrium

In this appendix we compute the equilibrium densities
associatedwithWright–Fisher processeswithmutation. Two types
of mutation processes are considered, bothmodeled by amutation
density. The firstmutation density is aDirac delta,while the second
one is an exponential distribution.

As the diffusion equation that describes the time evolution of
the density of alleles for diallelic SNPs is

∂φ(x, t)
∂t

=
1

4Ne

∂2

∂x2
[x(1 − x)φ(x, t)] + 2Neuµ(x), (A.1)

the equilibrium density φe(x) satisfies
∂φe(x)
∂t = 0. By using instead

the function ψ(x) = x(1 − x)φe(x), the associated second order
ordinary differential equation becomes

1
4Ne

∂2ψ(x)
∂x2

+ 2Neuµ(x) = 0. (A.2)

As Eq. (A.2) is only defined for x > 0,we can use Laplace transforms
to solve the equation. Let

µ̃(s) =

∫
∞

0
µ(x) exp(−sx)dx, (A.3)

be the Laplace transform associated with the mutation density
µ(x), and∫

∞

0

∂2ψ(x)
∂x2

exp(−sx)dx = s2ψ̃(s)− sψ(0)− ψ ′(0), (A.4)

the Laplace transform associated withψ ′′(x), withψ(0) andψ ′(0)
integration constants. Therefore, in the s domain, ψ̃(s) is

ψ̃(s) =
sψ(0)+ ψ ′(0)− 8N2

e uµ̃(s)
s2

, (A.5)



S. Lukić et al. / Theoretical Population Biology 79 (2011) 203–219 217
and by performing the inverse Laplace transform we obtain the
solution to the equilibrium density

φe(x) =
1

x(1 − x)
1

2π i
lim
T→∞

∫ ϵ+iT

ϵ−iT

sψ(0)+ ψ ′(0)− 8N2
e uµ̃(s)

s2

× exp(sx)ds (A.6)

We fix the integration constants, ψ(0) and ψ ′(0), by requiring
φe(x) to be finite at x = 1, and the probability flow at x = 1 to
be equal to u,

j(1) = −
1

4Ne
ψ ′(0) = u. (A.7)

As an example, we can evaluate exactly Eq. (A.6), for µ1(x) =

δ(x − 1/(2Ne)) and µ2(x) = c exp(−κx). For the Dirac delta, the
Laplace transform is

µ̃1(s) = exp(−s/(2Ne)). (A.8)

If we compute the corresponding inverse Laplace transform in
Eq. (A.6), and fix the integration constants as explained above, we
find the equilibrium density

φe(x) =
4Ne(2Ne − 1)ux − 8N2

e u(x − 1/(2Ne))θ(x − 1/(2Ne))

x(1 − x)
,

(A.9)

with θ(y) the Heaviside step function (θ(y) = 0 for y < 0,
θ(y) = 1/2 for y = 0, and θ(y) = 1 for y > 0). If x > 1/(2N),
Eq. (A.9) simplifies to

φe(x) =
4Neu
x
. (A.10)

In the case of µ2(x) = c exp(−κx), the Laplace transform is

µ̃2(s) =
c

s + κ
, (A.11)

and the corresponding equilibrium density, after integrating
Eq. (A.6), is given in Box II, which in the large κ limit, and for
x ≫ 1/κ , converges exponentially quickly to

φe(x) =
4Neu
x
. (A.13)

In the limit x → 0, φe(x) is finite only iff c =
1

2Ne
×

κ2

1−exp(−κ)−κ exp(−κ) , which is the normalization choice made in
Eq. (4.37), and the only one satisfying∫ 1

0
xµ2(x) =

1
2Ne

. (A.14)

This shows how a mutation model defined by a certain class of
smooth mutation densities reaches the same equilibrium density,
up to a small deviation, as the standard model with a Dirac delta.

Appendix B. Comparison of mutational models at non-
equilibrium

In this appendix we compare the non-equilibrium dynamics
of models with a mutation influx described by exponential
distributions, with models that consider a standard Dirac delta.

More particularly, we prove that if φ1(x, t) is the solution to an
infinite sites model PDE, with absorbing boundaries,
∂φ1(x, t)
∂t

=
1

4Ne

∂2

∂x2
[x(1 − x)φ1(x, t)]

+ 2Neuδ(x − 1/(2Ne)), (B.1)

and φ2(x, t) is the solution to the same model, but with an
exponential mutation density

∂φ2(x, t)
∂t

=
1

4Ne

∂2

∂x2
[x(1 − x)φ2(x, t)]

+ u
κ2 exp(−κx)

1 − exp(−κ)− κ exp(−κ)
, (B.2)

then, the deviation of φ2(x, t)with respect to φ1(x, t), as a function
of time and for any initial condition φ2(x, t = 0) = φ1(x, t = 0) =

ϕ(x), is, in the large t limit,∫ 1

0
|φ1(x, t)− φ2(x, t)|x(1 − x)dx

=
4Neu
κ
(1 − exp(−t/(2Ne)))+ O(e−κ). (B.3)

Here, | · | is the absolute value, and O(e−κ) are terms that decay
exponentially as a function of κ , which can be neglected in the large
κ limit.

As the total number of SNPs that are polymorphic in one
population depends on the population size and the mutation
rate, it is convenient to normalize the deviation equation (B.3) by
limt→∞

 1
0 |φ1(x, t)|x(1−x)dx = (2Ne−1)u. In this normalization

we have 1
0 |φ1(x, t)− φ2(x, t)|x(1 − x)dx

lim
t→∞

 1
0 |φ1(x, t)|x(1 − x)dx

=
2
κ
(1 − exp(−t/(2Ne)))+ O(e−κ ,N−1

e ). (B.4)

To prove Eq. (B.3), we first describe the solutions to Eqs. (B.1)
and (B.2). Both equations consist of a homogeneous term and an
inhomogeneous contribution given by the mutation density. As
they are linear equations, the solution to the PDE is the sum of a
homogeneous and an inhomogeneous term

φ1(x, t) = φh
1(x, t)+ φe

1(x), (B.5)

satisfying

∂φh
1(x, t)
∂t

=
1

4Ne

∂2

∂x2

x(1 − x)φh

1(x, t)


+
1

4Ne

∂2

∂x2

x(1 − x)φe

1(x)

+ 2Neuδ(x − 1/(2Ne)). (B.6)

Hence, the only time-independent term φe
1(x) that solves Eq. (B.6)

is the equilibrium density equation (A.9), and φh
1(x, t) obeys a

standard diffusion equation with no mutation density, and with
initial condition φh

1(x, t = 0) = ϕ(x)− φe
1(x). If Lφ

h
1(x, t) denotes

the Fokker–Planck operator acting on φh
1(x, t),

Lφh
1(x, t) =

1
4Ne

∂2

∂x2
[x(1 − x)φh

1(x, t)],

we canwrite the solution to Eq. (B.6) in the following compact form

φ1(x, t) = exp(tL)(ϕ(x)− φe
1(x))+ φe

1(x). (B.7)

Here, exp(tL) is the time-dependent action of the diffusion
operator on the initial density ϕ(x) − φe

1(x) while preserving the
absorbing boundary conditions. This operator can be diagonalized
in the basis of Gegenbauer polynomials on L2([0, 1]); see Kimura
(1955). The corresponding eigenvalues of exp(tL) are exp(−(i +
1)(i + 2)t/4Ne)with i ∈ [0,∞).
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2)
φe(x) =
4Neu(1 − x)+

8N2uc
κ


exp(−κ)(1 + 1/κ)− exp(−κ)x −

1
κ
exp(−κx)


x(1 − x)

(A.1

Box II.
We can solve Eq. (B.2) in a similar way, by using the
decomposition

φ2(x, t) = φh
2(x, t)+ φe

2(x). (B.8)

In this case, φe
2(x) is the equilibrium density associated with the

exponential mutation density, as defined in Eq. (A.12). The term
φh
2(x, t) evolves under pure random drift, with no mutation influx,

and initial condition φh
2(x, t = 0) = ϕ(x)− φe

2(x):

φ2(x, t) = exp(tL)(ϕ(x)− φe
2(x))+ φe

2(x). (B.9)

By subtracting Eq. (B.9) from Eq. (B.7), we can describe the time
evolution of the deviation as

φ1(x, t)− φ2(x, t) = − exp(tL)(φe
1(x)− φe

2(x))

+φe
1(x)− φe

2(x), (B.10)

which is independent of the initial condition ϕ(x).
One can show that φe

1(x) − φe
2(x) is non-negative on [0, 1], if

κ ≤ 2Ne. This can be seenmore clearly by computingφe
1(x)−φ

e
2(x)

in the large κ limit

φe
1(x)− φe

2(x) =
4Neu
1 − x

(2Ne − κ), x ∈ [0, 1/(2Ne)), (B.11)

φe
1(x)− φe

2(x) =
4Neue−κx

x(1 − x)
+ O(e−κ/(1 − x)),

x ∈ (1/(2Ne), 1]. (B.12)

The terms of order e−κ in Eq. (B.12) exactly cancel the divergence
at x = 1. Therefore, the action of the diffusion operator on φe

1(x)−
φe
2(x), will preserve the non-negativity of the density

exp(tL)(φe
1(x)− φe

2(x)) ≥ 0, ∀x ∈ [0, 1], ∀t > 0. (B.13)

Because of this inequality, the absolute value | exp(tL)(φe
1(x) −

φe
2(x))|, is the same as exp(tL)(φe

1(x)−φ
e
2(x)), andwe can evaluate

exactly the integral∫ 1

0
| exp(tL)(φe

1(x)− φe
2(x))|x(1 − x)dx

=

∫ 1

0
exp(tL)(φe

1(x)− φe
2(x))x(1 − x)dx, (B.14)

by expanding exp(tL)(φe
1(x)−φ

e
2(x)) in the eigenbasis of exp(tL).

This basis is orthogonal under the L2-product defined by theweight
x(1 − x), and the constant function on [0, 1] corresponds to the
eigenfunction with the smallest eigenvalue. In this way we can
interpret the right-hand side of Eq. (B.14) as a projection on this
eigenfunction, and evaluate the integral exactly.

The eigenbasis of exp(tL) is defined by the Gegenbauer poly-
nomials. As an example, the first three Gegenbauer polynomials on
[0, 1], orthonormal under the L2-product with weight x(1− x), are

T0(x) =
√
6, (B.15)

T1(x) =
√
30(1 − 2x), (B.16)

T2(x) =
√
84(1 − 5x + 5x2). (B.17)

The corresponding eigenvalues in exp(tL), are eigenvalues
exp(−t/(2Ne)), exp(−3t/(2Ne)), exp(−3t/Ne). Thus, Eq. (B.14) is
the same as∫ 1

0
exp(tL)(φe

1(x)− φe
2(x))x(1 − x)dx

=

∫ 1

0
exp(tL)(φe

1(x)− φe
2(x))

T0(x)
√
6

x(1 − x)dx, (B.18)

and

exp(−t/(2Ne))

∫ 1

0
(φe

1(x)− φe
2(x))x(1 − x)dx

=
4Neu
κ

exp(−t/(2Ne))+ O(e−κ). (B.19)

As 0 ≤ exp(tL)(φe
1(x) − φe

2(x)) ≤ φe
1(x) − φe

2(x) for all x ∈ [0, 1]
and for t ≫ Ne, we lastly compute Eq. (B.3), as∫ 1

0
|φ1(x, t)− φ2(x, t)|x(1 − x)dx

=

∫ 1

0
(φe

1(x)− φe
2(x))x(1 − x)dx

−

∫ 1

0
exp (tL) (φe

1(x)− φe
2(x))x(1 − x)dx, (B.20)

which is∫ 1

0
|φ1(x, t)− φ2(x, t)|x(1 − x)dx

=
4Neu
κ
(1 − exp(−t/(2Ne)))+ O(e−κ), (B.21)

as we wanted to show.
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