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In recent years, many studies have found evidence of

gene flow between diverging populations by analyzing

genetic data under an Isolation with Migration (IM)

model (Pinho and Hey 2010). Given evidence of gene

exchange, investigators often then wish to inquire of

the time when gene flow occurred (e.g. Won & Hey

2005; Becquet & Przeworski 2009). For example, a

model of divergence with gene flow would be sug-

gested whether gene flow occurred early or throughout

the divergence process, whereas secondary contact

would be the likely interpretation if gene flow was

found to only have occurred after divergence had been

ongoing for some time. Recently, Strasburg and Riese-

berg (2011) assessed the quality of estimates for the

time of migration events using the method currently

implemented in the IMA2 program (Hey 2010). They

found that the credible intervals of estimated times

were so wide as to make the method unsuitable for the

question. These results suggest that some conclusions of

previous studies that draw upon the posterior distribu-

tion for times of migration should be discounted (e.g.

Won & Hey 2005; Niemiller et al. 2008; Strasburg et al.

2008; Nadachowska & Babik 2009).

The Strasburg & Rieseberg (2011) study reports

results from simulations. Here, we examine, using the

theory underlying the method implemented in the IMA2

program, the possible bases for their observations. We

demonstrate that gene migration times are not fully

identifiable using the general coalescent for genealogies
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in an IM model, as implemented in IMA2 and similar

programs. In many respects, the findings are general to

methods that rely upon calculating the probabilities of

genealogies under the coalescent and so are of broader

interest than any particular program. We note that the

method implemented in IMA2 is the same as that in the

IMA program (Hey & Nielsen 2007), and hereafter, we

refer simply to IMA.
Principles of IMA

The function of IMA is to obtain the posterior density,

h(Q|X), for the parameters Q of an IM model given

data X from one or more loci from two populations (or

more than two populations in the case of IMA2) (for

details see Hey & Nielsen 2007; Hey 2010). The parame-

ters Q include the effective population sizes, migration

rates and times of population separation. Hey & Niel-

sen (2007) showed that the posterior of the parameters

h(Q|X) can be approximated given a sample of genealo-

gies from the posterior density h(G|X). In effect, the

method collects the information that the data contains

about Q in the form of a sample of genealogies and

then uses these genealogies to estimate the posterior

density for Q, i.e. p(Q|G,X) ¼ p(Q|G) if G�h(G|X)

(Hey & Nielsen 2007; Hey 2010). But because there is

additional information in the genealogies, which does

not bear directly on Q, it is also possible to estimate a

posterior density for other quantities, such as the time

of most recent common ancestor in the genealogy

(TMRCA), the number and time of coalescent events in

each population, as well as the number and time of

migration events between pairs of populations for each

locus. Thus, even though the IM model assumes a con-

stant rate of gene flow since population splitting, it

seemed that by examining the genealogies sampled

from the posterior density, it would also be possible to

estimate the posterior density of migration times (Won

& Hey 2005). As Strasburg & Rieseberg (2011) discov-

ered by simulation and as we show here using an

approach based on the calculation of the probability of

a genealogy, this is not the case.

In IMA and related programs, a value of G is an ultra-

metric binary tree that depicts the topology, branch

lengths, migration times and migration directions for a

sample of genes at a locus (Beerli & Felsenstein 1999;

Nielsen & Wakeley 2001). To address the identifiability

of migration times, we partition G into several compo-
� 2011 Blackwell Publishing Ltd



NEWS AND VIEWS: COMMENT 3957
nents, including a topology k, a vector with the coales-

cent times tc ¼ (tc1
,…,tcT

), a vector with the migration

times tm ¼ (tm1
,…,tmT

), where cT and mT are the total

number of coalescent and migration events, respec-

tively, and a matrix n, where nji is the number of lin-

eages in population j at the ith interval between any

two events. For simplicity, we refer to the topology and

coalescent times as K ¼ (k,tc).

The probability of a genealogy, p(G|Q) ¼ p(tm,n,K|Q),

is obtained based on coalescent theory assuming a demo-

graphic model with parameters Q. It is noteworthy that

p(G|Q) does not depend directly on much of the infor-

mation in a genealogy but rather on a few summaries. In

models that include migration, these summaries are

counts and sums of rates for coalescent and migration

events, including the following: (i) the number of coales-

cent events in each population cc ¼ (cc1
,…,ccp

); (ii) the

number of migration events between each pair of popu-

lations cm ¼ (cm12
,…,cmp(p)1)

); (iii) the sum of coalescent

rates for each population fc ¼ (fc1
,…,fcp

); and (iv) the sum

of rates for migration events for each pair of populations

fm ¼ (fm12
,…,fmp(p)1)

), where p refers to the number of

populations. In more detail, the sums of rates of coales-

cent for population j and rates of migration between

population j and l are defined as functions of the time

intervals and number of lineages in each population during

each interval:

fcj
ðt;nÞ ¼

XcT þmT

i¼ 1

Dti

nji

2

� �� �
;

fmjl
ðt;nÞ ¼

XcTþmT

i¼ 1

½Dtinji
�;

ð1Þ

where Dti ¼ ti+1)ti is the time interval between any two

events, either a coalescent or migration, and t ¼ (tm,tc) is

a vector with the sorted coalescent and migration times.

For simplicity, these summaries will be referred to as

s ¼ (cc,cm,fc,fm). For instance, for an IM model, during a

time period with p populations, given the scaled effective

sizes h and migration rates m, this probability is

pðtm;n;KjHÞ ¼
Yp

j¼ 1

2

hj

� �ccj

e
� 2

hj
fcj

� �Y
l6¼j

m
cmjl

j!le
ð�mj!lfmjl

Þ
; ð2Þ

(Kuhner et al. 1998; Beerli & Felsenstein 1999; Hey &

Nielsen 2007), where hj ¼ 4Nej
l, mj fi l ¼ Mj fi l/l, 4Nej

is the effective size of population j, l the mutation rate,

and Mj fi l is the migration rate between population j

and l. Note that the terms following the first and sec-

ond products are associated with coalescent and migra-

tion events, respectively. From eqn 2, we can see that

the probability of the genealogy (represented by its

components tm, n, and K) depends on the values of the

summaries s ¼ (cc,cm,fc,fm). All genealogies whose tm,
� 2011 Blackwell Publishing Ltd
n and K correspond to the same set of summaries s

have the same prior probability. This is a general

result, as eqn 2 is the basis of most inference methods

based on genealogies (e.g. Beerli & Felsenstein 1999),

including methods where the prior probability of the

genealogy is calculated by integrating over the prior

distribution of the parameters Q (Hey & Nielsen 2007;

Hey 2010).

As a consequence, for the final step of the estimation

of the posterior probability h(Q|X), we can use a sam-

ple of values of s from the posterior of genealogies. The

result is a function that is itself a mean of functions,

one for each sampled value of s,

hðHjXÞ � 1

k

Xk

i¼ 1

fðsijHÞpðHÞ
pðsiÞ

; ð3Þ

for a sample of k values of s�h(s,K|X), where p(Q) is

the prior of the parameters (Hey & Nielsen 2007; Hey

2010). As f(si|Q) ¼ f(Gi|Q)/p(Gi|si) and p(si) ¼ p(Gi)/

p(Gi|si) (similar to eqn A.2), the above expression is

an alternative representation for the posterior h(Q|X),

which is typically expressed as a function of genealo-

gies (see eqns 11 and 19 in Hey & Nielsen (2007)). In

the case of an IM model with two sampled popula-

tions and one ancestral population, s includes just 10

quantities regardless of the sample sizes, and yet, it is

sufficient for calculating the probability of a genealogy

under the IM model. For multiple independent loci

each with a genealogy, s still includes just 10 quanti-

ties, each the sum of the corresponding quantities cal-

culated for the individual loci (Hey & Nielsen 2007;

Hey 2010).
Posterior probability of migration times

The posterior probability for the genealogy includes

that for the migration times, tm,

hðGjXÞ ¼ hðtm;n;KjXÞ ¼ fðXjtm;n;KÞpðtm;n;KÞ=fðXÞ; ð4Þ

where f(X|tm,n,K) is the likelihood, p(tm,n,K) is the

prior of the genealogy, and f(X) is the marginal likeli-

hood. It is noteworthy that the likelihood depends only

on the topology and coalescent times of the genealogy

and does not depend on the number and times of

migration events (Felsenstein 1988), i.e.

fðXjtm;n;KÞ ¼ fðXjKÞ: ð5Þ

This raises the question of whether data can in fact

contain any information about the migration times,

when considered under an IM model. This can be

answered by looking further at the posterior distribu-
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tion. Combining eqn 5 in eqn 4 and noting that

h(K|X) ¼ f(X|K)p(K)/f(X), the posterior becomes
hðtm;n;KjXÞ ¼ hðKjXÞpðtm;njKÞ: ð6Þ

This shows that the posterior distribution for the times

of migration depends on the posterior for the topology

and coalescent times h(K|X) and on the conditional

prior p(tm,n|K) (eqn 6). It can be seen that the most

likely migration times are supported by the data indi-

rectly through the posterior of the topology and coales-

cent times, i.e., the most likely K induce a change in the

prior of migration timing p(tm,n|K). This demonstrates

that data provide at least some information about the

migration timing (eqn 6). However, as we describe

later, the data inform us about the most likely values

for summaries of the time intervals s, rather than about

the elements of the migration time vector tm.
Nonidentifiability of genealogies

Consider two genealogies G ¼ (tm,n,K) and G* ¼
(tm*,n,K) that share the same coalescent times and

topologies, K, and the same number of lineages n

(implying the same number of migrations), but have

different migration times, tm and tm*, respectively.

Because the likelihood depends only on K (eqn 5) and

does not depend on tm, the posterior probabilities are

equal if the two genealogies have the same prior proba-

bilities, pðtm;n;KÞ ¼ pðt �m ;n;KÞ,

hðGjXÞ ¼ ðXjKÞpðtm;n;KÞ
fðXÞ ¼ fðXjKÞpðt �m ;n;KÞ

fðXÞ ¼ hðG�jXÞ:

ð7Þ

As seen in eqn 2, this holds true for genealogies

with the same set of summaries s. Therefore, it is pos-

sible to show that s is sufficient for (tm,n), in the sense

that the posterior of the genealogy depends on s, irre-

spective of the particular values of (tm,n) (see Appen-

dix I). In other words, the posterior of the migration

timing (eqn 6) is fully characterized by the posterior

h(s,K|X). This means that information provided by the

data about the most likely times of migration is cap-

tured through the posterior of the summaries s. This

makes sense because two of the set of summaries (fc

and fm) are functions of the time intervals (eqn 1).

However, the fact that these summaries are sums of

counts and rates of events across loci introduces an

identifiability problem. The reason is that we can esti-

mate the most likely values for the sums given the

data, h(s,K|X), but we cannot expect to estimate each

term of the sum. In particular, there are multiple com-

binations of (tm,n) for a given value of s. Therefore,
we can have two or more genealogies with the same

posterior probability but with different migration tim-

ing distributions. In these cases, genealogies are said

to be nonidentifiable as it is impossible to distinguish

them based on their posterior.

Figure 1 shows an example of this nonidentifiability

using two genealogies with different migration timings.

In the left panel, both migrations happen recently,

whereas in the right panel, both migrations happen just

after the population split. Despite having different

migration times, both genealogies have the same values

for the summaries s ¼ (cc,cm,fc,fm) and for the coales-

cent time tc, and hence have the same posterior proba-

bilities. As seen in the Fig. 1, all genealogies with the

same time interval Dt and tc have the same posterior,

despite having different migration timing tm.

When there are multiple loci, the nonidentifiability

issue is compounded because the posterior probability

of all the genealogies depends on summaries that are

the sums of s for each of the individual loci. Figure 2

shows an example for two loci. As can be seen, genealo-

gies have migrations in different periods of time, which

are consistent in both loci. In Fig. 2a, the two loci sug-

gest older migration, whereas in Fig. 2b, the two loci

have recent migration events. These two different cases

could be interpreted as favoring alternative models of

divergence, if it were possible to distinguish them. But

because s is a sum over loci, given that in this example

(Dt1+Dt2) ¼ (Dt1*+Dt2*) and the coalescent times are the

same, the two groups of genealogies will have the same

value of s. Hence, these two groups of genealogies have

the same posterior, despite the very different times of

migration.
Relation between genealogy summaries and migration

times

Given that some information about migration time is

contained in the data (eqn 6), we wondered if some

general feature of the migration times are contained in

s, particularly the summary fm that is the sum of migra-

tion rates over time intervals (eqn 1). Data sets were

simulated and the joint distribution of fm and overall

measures of migration, including the mean, minimum

and maximum migration time, were recorded. Simula-

tions were carried out under an IM model, which

assumes a constant migration rate, with two sampled

populations that diverged from one ancestral popula-

tion, using the coalescent-based simulator implemented

in SIMDIV (Wang and Hey 2010). Data sets were gener-

ated with a fixed set of parameter values (h1 ¼ h2 ¼
hA ¼ 5.0, m1 fi 2 ¼ m2 fi 1 ¼ 0.5 and tsplit ¼ 2.0), varying

the sample sizes in each population n ¼ (2,10,100). If

genealogies contain information about these overall
� 2011 Blackwell Publishing Ltd



(a) (b)

Fig. 1 Example of nonidentifiability of migration timing for

single-locus genealogies. Genealogies under an IM model for

two gene copies from two sampling populations and an ances-

tral population. Both genealogies share the same time of popu-

lation split tsplit, topology and coalescent time K, number of

migrations cm and number of coalescent events cc, but have

different migration times, tm and tm*, respectively. Thus, the

two genealogies have the same values for cc ¼ (0,0,1), cm ¼
(1,1). If the time interval between the two migration events, Dt,

is the same in both genealogies, they will also have the same

values for (fc,fm). For instance, if Dt ¼ Dt* ¼ 2, tsplit ¼ 10 and

tc ¼ 15, then fc ¼ (0,2,5) and fm ¼ (8,12) for both genealogies.

Both genealogies have the same summaries s and hence have

the same posterior probability (eqn 7).
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measures of migration time, then we would expect to

see a correlation with fm. However, as shown in Fig. 3,

this was not observed. Regardless of sample size, fm
(a) (b)

� 2011 Blackwell Publishing Ltd
shows only a quite modest association with the mean,

minimum or maximum of tm. The Spearman’s rank cor-

relation coefficients were low, ranging from 0.09 to 0.12

for the mean, from 0.07 to 0.10 for the maximum, and

from 0 to 0.05 for the minimum. Similar results were

obtained for fc (not shown). These results suggest that

we cannot expect to estimate these features of tm.
Discussion

Strasburg & Rieseberg (2011) demonstrated with simu-

lations an identifiability problem for migration timing.

Here, we explain the underlying basis of their findings

in terms of the calculation for the probability of geneal-

ogies. When using the coalescent to calculate the proba-

bility of genealogies under a model with migration,

such as the IM model, the probability of a genealogy

depends only on a modest set of summaries s ¼
(cc,cm,fc,fm) (Hey & Nielsen 2007), which means that

genealogies that differ in their times of migration can

have the same values for s. This implies that genealogies

with different migration timings can have the same pos-

terior probability and that the migration timings are sta-

tistically nonidentifiable. Investigators cannot expect to

be able to estimate migration times for the purpose of

discerning models of population or species divergence

where gene flow varies through time.
Fig. 2 Nonidentifiability of migration

timing for multiple loci. Example of two

sets of genealogies for two loci with dif-

ferent times of migration, but with the

same time of split tsplit and coalescent

times tc1
and tc2

, for locus 1 and locus 2,

respectively. The posteriors are

h(G1,G2|X) and h(G1*,G2*|X) for (a) and

(b), respectively. Given that the summa-

ries are summed over loci, the two pos-

terior distributions are the same if

(Dt1+Dt2) ¼ (Dt1*+Dt2*). For instance,

with (Dt1+Dt2) ¼ (Dt1*+Dt2*) ¼ 8, tsplit ¼
10, tc1

¼ 12 and tc2
¼ 15, the summaries

are cc ¼ (0,0,2), cm ¼ (2,2), fc ¼ (0,8,7)

and fm ¼ (12,28) for both sets of geneal-

ogies. Provided that the summaries and

times of coalescent are the same, the

two posterior distributions are identical

h(G1,G2|X) ¼ h(G1*,G2*|X). Note that

the summaries fc and fm depend on the

time intervals, rather than in the actual

times of migration tm. See legend of

Fig. 1 and text for details.
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This is a general result applicable to genealogies

under neutral demographic models that include migra-

tion and that depend on the coalescent theory. We thus

expect that migration timing estimates obtained with

programs such as MDIV (Nielsen & Wakeley 2001), IMA

(Hey & Nielsen 2004, 2007), LAMARC (Kuhner et al. 1998;

Kuhner 2006) and MIGRATE (Beerli & Felsenstein 1999)

will suffer from this limitation. It is noteworthy that the

nonidentifiability of migration timing does not intro-

duce any bias in the estimates of the demographic

parameters, such as the effective sizes and migration

rates, because the summaries capture all the genealogi-

cal information needed to estimate the posterior of the

parameters (eqn 3) (Hey & Nielsen 2007; Hey 2010).

Previous studies have reported a wide range of

shapes for the posterior distribution of migration tim-

ings, including cases suggesting recent migrations, old
(d)

(g) (h)

(e)

(a) (b)

Fig. 3 Contour plots of the joint distributions of the mean, minimum

These were obtained with 50 000 simulations under a two popula

m2 fi 1 ¼ 0.5 and tsplit ¼ 2.0. (a–c) Results obtained with a sample siz

with a sample size of 10 gene copies in each population; (g–i) Results

tion. Note that these plots correspond to empirical prior distributions

mated using IMA.
migrations and/or complex multimodal distributions

(e.g. Niemiller et al. 2008; Strasburg et al. 2008; Nada-

chowska & Babik 2009; Carneiro et al. 2010). The pres-

ence of a peak and of variation in the number and

location of peaks in the posterior distribution lends the

appearance that these distributions are informative.

However, this is misleading as the estimated posterior

densities for migration times are mostly a function of (i)

the prior distribution of migration times and (ii) the

nonidentifiability problem. Unlike the prior distribu-

tions for the migration rates that are usually uniform

and specified by the investigator, the prior distributions

for the migration times are induced by the model

assumptions. In a model with constant gene flow, the

prior distribution for the migration times is not

expected to be uniform, but rather a decreasing function

with a peak close to zero. The reason is that the number
(i)

(f)

(c)

and maximum of tm and the summary of the genealogy fm12
.

tion IM model with parameters h1 ¼ h2 ¼ hA ¼ 5.0, m1 fi 2 ¼
e of two gene copies in each population; (d–f) Results obtained

obtained with a sample size of 100 gene copies in each popula-

obtained with simulations and not to posterior distribution esti-

� 2011 Blackwell Publishing Ltd
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of migration events is proportional to the number of

lineages in each population at any instant, and given

that the number of lineages decreases going backwards

in time owing to coalescent events, most migrations are

expected to occur recently. This may explain some of

the results found suggesting recent migration. In addi-

tion, the effects of the nonidentifiability on the posteri-

ors arise because of the fact that the summaries s are

sufficient (eqn A.1) and sums of functions of the migra-

tion and coalescent times (eqn 1). Given a particular

data set, the most likely values for the summaries s

impose strong correlations on the migration times tm.

The shape of the posteriors is thus a function of the cor-

relations between the migration times, which depend

on the information contained in the data about the val-

ues of the summaries. This is influenced by the proper-

ties of each particular dataset, such as the sample sizes,

sequence lengths, number of loci, as well as the priors

specified for the demographic parameters. As a conse-

quence, the posteriors can have complex shapes, includ-

ing distributions with multiple peaks. In any case, the

fact that the times of migration are nonidentifiable

implies that the posterior distributions do not have the

desirable property of identifying the correct times of

migration. Thus, irrespective of its shape, these are not

useful to estimate the times of migration.

The initial motivation for looking at the posterior of

migration timing was to infer variation in gene flow

through time (e.g. Won & Hey 2005). As noted by Stras-

burg & Rieseberg (2011), cases in which the migration

rates vary through time violate the assumptions of the

basic IM model. We can envision at least two possible

approaches to modelling variable migration rates explic-

itly. One is to assume that migration rates vary through

time following some deterministic function, e.g., exponen-

tial change, the parameters of which are estimated from

the data along with other parameters. Another possibility

is to include in the model more migration parameters,

each associated with a distinct time period (e.g. as used in

simulations by Becquet & Przeworski 2009). In the sim-

plest case of an IM model with two sampled populations,

there would be two migration periods, each with its own

migration rates, as well as an additional parameter for the

time at which migration rate changed. However, this

approach increases significantly the number of parame-

ters of the model, and it is possible that a large amount of

additional data would be required for estimation.
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Appendix I

Here, we demonstrate that the summaries of the genealogy

s ¼ (cc,cm,fc,fm) are sufficient for the migration timing tm and

number of lineages n. This is analogous to demonstrating that

a given statistic is sufficient for the parameters of a model.

Note that by definition, a statistic is a function of the data,

whereas we are dealing with functions of genealogies. This

can be shown applying the factorisation theorem (Lehmann &

Casella 1998) to the posterior
hðtm;n;KjXÞ ¼ pðtm;njK; sÞhðs;KjXÞ; ðA:1Þ

where p(tm,n|K,s) is the probability of (tm,n) given the

values of s, and h(s,K|X) is the posterior of s. Noting

that h(tm,n,K|X) ¼ h(K|X)p(tm,n|K) (eqn 6) and that

h(s,K|X) ¼ h(K|X)p(s|K), the above-mentioned equa-

tion becomes

pðtm;n;KÞ ¼ pðtm;njs;KÞpðs;KÞ: ðA:2Þ

Thus, showing that the prior p(tm,n,K) can be factorized

into the two functions p(tm,n|s,K) and p(s,K), implies that s is
sufficient for the posterior h(tm,n|X). The function p(tm,n|s,K)

reflects the probability of obtaining a given configuration for

(tm,n) conditional on the values of the summaries s. Note that

it does not depend on the data X as required for s to be con-

sidered sufficient. Given that all genealogies that have the

same corresponding values for the summaries are equally

likely (eqn 2), the probability p(tm,n|s,K) will be proportional

to the number of genealogies sharing the same values for s.

The prior p(s,K) is obtained by integrating over the prior prob-

ability of genealogies whose (tm,n,K) correspond to a given set

of summaries es,
pðs ¼ es;KÞ ¼ Z pðtm;n;KÞ1fsðtm;nÞ ¼esgdtmdn; ðA:3Þ

where 1fcg is an indicator variable that takes the value 1

if the condition c holds true and zero otherwise. The

same reasoning applies to the posterior h(s,K|X).

Again, note that h(s,K|X) does not depend on (tm,n), as

required for s to be considered sufficient. Given that s

is sufficient and a sum of counts and rates across period

of the genealogy and across loci, the elements of the

sum (tm,n) are nonidentifiable.
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