
IMa2p – parallel MCMC and inference of ancient
demography under the Isolation with migration (IM) model

ARUN SETHURAMAN and JODY HEY

Center for Computational Genetics and Genomics, Department of Biology, Temple University, Philadelphia, PA 19102, USA

Abstract

IMa2 and related programs are used to study the divergence of closely related species and of populations within spe-

cies. These methods are based on the sampling of genealogies using MCMC, and they can proceed quite slowly for

larger data sets. We describe a parallel implementation, called IMa2p, that provides a nearly linear increase in gene-

alogy sampling rate with the number of processors in use. IMa2p is written in OpenMPI and C++, and scales well

for demographic analyses of a large number of loci and populations, which are difficult to study using the serial ver-

sion of the program.

Keywords: Isolation with migration, MCMC, Metropolis coupling, message passing interface, Parallelization

Received 28 January 2015; revision received 3 June 2015; accepted 4 June 2015

Introduction

Isolation with migration (IM) models are used to study

the divergence of species and populations in situations

where investigators are interested in the roles played by

both the time since separation and the rate of gene

exchange between populations (Wakeley & Hey 1998;

Nielsen & Wakeley 2001). As implemented in the pro-

gram IMa2, analyses proceed by running a Markov chain

Monte Carlo (MCMC) simulation that generates samples

of genealogies, G, and splitting times, t, from the poster-

ior distribution p(G,t|data). However, with larger data

sets, the exploration of the state space {G,t} by MCMC

can proceed very slowly To shorten runtimes, it is com-

mon to use a method in which an unheated (cold) chain

is run simultaneously with multiple heated chains, and a

Metropolis update is used to swap state spaces between

chains. This method was developed independently by

investigators in different fields (Swendsen & Wang 1986;

Geyer 1991; Kimura & Taki 1991; Hansmann 1997) and

goes by several names – here we will use Metropolis-

coupled MCMC, or MC3 (Geyer 1991).

As implemented in IMa2, MC3 can decrease the over-

all run time, even as the computation rate per chain is

reduced, because of the improved mixing that occurs

with the addition of multiple chains. However, because

the IMa2 program runs on a single processor, run times

are often still quite long, and the method is often not

practical for large data sets. Here, we describe a parallel

implementation of IMa2 that distributes chains over pro-

cessors using the Message Passing Interface (MPI). Some

caveats with parallelization using a synchronization

algorithm are also discussed.

Methods

IMa2 algorithm

Hey & Nielsen (2007) described a version of the Felsen-

stein equation (Felsenstein 1988) for the posterior proba-

bility of the parameters of a two-population Isolation

with migration model, including population sizes,

migration rates and divergence times. Under a two-pop-

ulation model, the parameters to be estimated are the

splitting time, t, and a set of coalescent and migration

rates s = {Θ1, Θ2, Θa, m12, m21} where Θ1, Θ2 and Θa, are

the population mutation rates for the sampled popula-

tions and the ancestral population, respectively. The

splitting time t is when the ancestral population of size

Θa split into populations 1 and 2. Bidirectional migration

rates between the populations are described by the

parameters m12 and m21. The posterior probability distri-

bution of the rate parameters, given the data, X, can then

be written as:

pðsjXÞ ¼
Z
W

pðsjGÞpðGjXÞdG eqn 1

where G is a coalescent genealogy with migration events,

and W is the space of possible genealogies. Expression
Correspondence: Arun Sethuraman, Fax: +215-204-6646;

E-mail: arun@temple.edu

© 2015 John Wiley & Sons Ltd

Molecular Ecology Resources (2015) doi: 10.1111/1755-0998.12437

(1) can be approximated by first running a Markov chain

simulation over splitting times and genealogies, with

updates decided by a Metropolis–Hastings (MH) crite-

rion:

min 1;
pðXjG�; t�ÞpðG�; t�ÞgðG�; t� ! G; tÞ
pðXjG; tÞpðG; tÞgðG; t ! G�; t�Þ

� �
eqn 2

Then, using a sample of genealogies and splitting

times p(G,t|X), expression (1) can be approximated as:

pðsjXÞ � 1

k

Xk

i¼1

pðsjGi; tiÞ eqn 3

In practice, an IMa2 analysis has two steps or modes,

including ‘M’ (MCMC), during which genealogies are

sampled from the posterior distribution p(G,t|X), and ‘L’

(load genealogies), during which the posterior distribu-

tion of all rate parameters (s), given the data (X) are

obtained by the approximation in (eqn 3).

Metropolis-coupled MCMC

In MC3, there are n Markov chains with heating parame-

ters, or ‘temperatures’, b1, b2,. . ., bn, where 0 < b ≤ 1. For

the unheated chain 1, b1 = 1 and the stationary distribu-

tion is the desired posterior density distribution, while

all other chains track stationary distributions that are

proportional to that of the unheated chain, raised to the

power of their corresponding temperature. In each itera-

tion, the state spaces of all chains are updated using

eqn 3, after which MC3 updates are attempted by swap-

ping the state spaces (or, equivalently, the b values) of

two chains at random with acceptance probability

min 1;
pðGx; txjXÞbx pðGy; tyjXÞby
pðGy; tyjXÞbx pðGx; txjXÞby

()
; eqn 4

where x and y are two randomly chosen chains.

IMa2p algorithm

The MC3 algorithm lends itself well to parallelization,

with different chains running on different processors.

Altekar et al. (2004) describe two synchronization

schemes (‘Global’ and ‘Point-to-point’) that can be used

to ensure that chains are synchronized, and that swaps

are only attempted between chains that are in the same

iteration. We implemented a combination of both

schemes to maintain synchrony throughout the run.

Under the ‘global’ scheme, processors are synchronized

by calling a ‘barrier’ operation (MPI::Barrier in the Open-

MPI framework), which forces processors to wait until

parallel communication is complete before proceeding to

the next iteration of MCMC. Under the ‘Point-to-point’

scheme, exchange sequence is shared among processors,

thus allowing processors not involved in an MPI opera-

tion to proceed onto the next iteration without having to

wait. We used both of these by exchanging information

between processors (i.e. ‘Point-to-point’) for heat swap-

ping, and using MPI::Barrier operations (i.e. ‘Global’) for

obtaining information about the progress of the run.

In brief, updated genealogies and divergence times

are proposed on each chain in the MCMC. All chains

then either accept or reject the proposed genealogy and

divergence time using the Metropolis–Hastings criterion,

defined in eqn 3. After the update step in every chain,

two chains are randomly chosen to attempt a tempera-

ture swap. One of the chosen chains computes the swap

acceptance MH term (eqn 4), notifies the other of success

or failure of the swap attempt, upon which both chains

swap their temperatures from temporary swap holders

(to prevent race conditions). For every other chain that is

not involved in a swap operation, MCMC operations

continue until the next iteration in which that chain is

involved in a swap operation.

Mixing and convergence

At regular intervals, an MPI barrier is imposed so that

summary information on acceptance of swaps between

chains and on overall convergence of the cold chain can

be collated by the head node and to ensure synchrony

such that all chains are in the same generation (see Algo-

rithm 2).

We assessed mixing and the approach to stationarity

by estimating the autocorrelation and effective sample

sizes (ESS) of quantities sampled from the state space of

the unheated chain (Geyer 1991). See Appendix 1, Algo-

rithm 3 for details on autocorrelation assessment.

Synchronization

Two common problems associated with synchronization

of MC3 are (i) deadlocks, wherein a processor is left wait-

ing for swap information from another processor that

will not be sent, and (ii) race conditions, wherein two

processors attempt to access swap information from the

same memory location. We avoid deadlocks by deciding

the sequence of attempted swaps ahead of time (Altekar

et al. 2004). Adhering to the exchange rule, all nodes use

the same sequence and two chains only attempt to swap

if they are both in the swap sequence at that iteration,

while other chains continue with their updates. Race

conditions are avoided by the use of swap holders as

proposed by Altekar et al. (2004). Prior to swapping in

any iteration, temperatures are stored in temporary swap

© 2015 John Wiley & Sons Ltd

2 A. SETHURAMAN and J . HEY

holders, and chains of temperatures are swapped with

these holders upon swap acceptance.

Simulations

Our primary question, in assessing performance, is how

the overall speed of calculations changes as a function of

the number of processors. Because of the need to maintain

synchrony among chains, we expect a less than linear

response as the number of chains increases. If the time

required to update individual chains varies little among

chains, then the synchronization requirement may add lit-

tle overhead. This last point raises a second question, if

we run a model that is expected to give a high variance in

the time to update individual chains, will we see a corre-

sponding departure in performance (as measured as a

departure from a linear relationship between rate of calcu-

lation and number of processors)? All simulations were

performed using MS (Hudson 2002) under a two-popula-

tion model (see Simulations in Appendix 1).

For the first set of simulations (designed to analyse com-

putational speed-ups using IMa2p), we varied the number

of loci (5, 50 and 300 loci) for a model with 15 gene copies

sampled from each of two populations. Model parameters

were set as follows: Θ1 = Θ2 = Θa = m12 = m21 = 1; and

t = 0.01. Five independent runs were made for each data

set, each using 60 Metropolis-coupled chains, distributed

among 1–20 processors.
The second set of simulations was designed to assess

the circumstances when the departure from a linear

improvement may be greatest. We expect this to occur for

models that invoke a high variance among chains in time

required to complete a genealogy update. A single locus

was simulated with 50 gene copies from each population,

and the analyses conducted with a large upper bound on

the migration rate prior distribution (m = 1, 10, 100), and

the likelihood (p(X|G)) set to a constant. This has the

effect of causing the data to be ignored and causes the tar-

get posterior density to equal the prior distribution of the

model parameters. In this way, we cause the number of

migration events in the genealogies to vary widely, and

because calculations require more time for genealogies

with many migration events, we increase the variance

among chains in required computing time per update. As

processors are synchronized at the end of each iteration,

we expect that the greater the number of chains, the more

time spent in waiting for another chain to finish its com-

putations. Five independent runs were performed, and

the number of processors varied between 1 and 10.

Additional simulations were conducted to confirm

that varying the number of processors does not affect the

target density. Here, we show the results for one data set

and a varying number of processors. A data set was

generated with 2 loci and 15 individuals from each

population of size with parameters as follows: Θ1 =
Θ2 = Θa = 5, m12 = m21 = 2; and t = 0.2. Parameter esti-

mates from parallel (2–20 processors) and serial (1 pro-

cessor) runs were compared by plotting marginal

posterior density estimates of parameters across dupli-

cate MCMC runs. Two tailed Kolmogorov–Smirnov (KS)

tests were performed between cumulative posterior den-

sities obtained for each parameter to assess whether the

distributions obtained varied with the number of proces-

sors. The null hypothesis (H0) for KS tests of equality

was that the cumulative posterior density distributions

of each parameter estimated using x processors was the

same as the distribution estimated using y processors,

where x and y were one of 1–20 processors. The alternate

hypothesis (Ha) was that two distributions using x and y

processors were not equal. Analyses were run using a

burn-in period of 100,000 iterations, and 20,000 genealo-

gies were sampled in steps of 1000 after burn-in (total of

2 9 107 iterations after burn-in). Bonferroni correction

for multiple tests (across all pairs of number of proces-

sors – total of 15 pairwise comparisons) was performed

on thus obtained P-values at a threshold of P = 0.05.

Empirical data

To demonstrate IMa2p on empirical data, and to com-

pare run times against the serial version of IMa2, we

measured computational times across replicate runs of

IMa2p and IMa2 using a data set of 48 loci from two

chimpanzee subspecies (Pan troglodytes troglodytes and

P. t. verus) (Won & Hey 2005). We used the identical set-

tings as originally published for prior distributions,

number of chains in MCMC and number of genealogies

saved (see Appendix 1). We varied the number of pro-

cessors between 1 and 10, with five replicate runs of

IMa2p, and measured the computational time required

for the entire run in each case. We also compared com-

putational time required by IMa2p against that of a serial

replicate run of IMa2.

All simulation analyses were performed on the HIGH-

MEM (Dell R610, 8 nodes, 29 Intel Xeon X5677, 3.5 GHz, 8

cores/node) or BIGMEM (Supermicro H8QG6, 39 AMD

Opteron 6238, 2.6 GHz, 42 cores/node) nodes of Temple

University’s Owlsnest HPC server. Analyses of the

empirical data were performed on a Dell Precision T5610

desktop (INTEL XEON E5-2620, 2.10 GHz, 12 cores).

Results

Computation time and number of processors

Plots of computational time (number of MCMC itera-

tions per minute – see Figs 1 and 2) depart modestly

from a linear relationship with the number of processors,

© 2015 John Wiley & Sons Ltd

IMA2P PARALLEL IM MODEL INFERENCE 3

for simulated data sets with 5, 50 and 300 loci, and for

the chimpanzee data set from Won & Hey (2005). The

departure from linearity is less for data sets with more

loci and is essentially absent for the largest data sets. On

average, larger data sets would be expected to have

lower communication-to-computation time ratios (and

larger ratios for smaller data sets). However, as the num-

ber of processors increases, the communication time

(time spent on MPI operations) also increases. Corre-

spondingly, we would expect a communication-to-com-

putation time ratio closer to 1 at larger number of

processors for larger data sets. The total times required

for the analyses in Fig. 1 varied strongly with the num-

ber of loci. The 5-locus data set completed its run in

~10.5 min on a single processor, as against 41 s using 20

processors. The 50-locus data set completed its run in

~2 h on a single processor and ~7 min using 20 proces-

sors. The 300-locus data set on the other hand required

~23 h on a single processor, but ~1 h on 20 processors.

Analysis of the data set from Won & Hey (2005) for a

total of 200,000 iterations using 30 chains required ~4 h

using the serial IMa2 program and on a single processor

using IMa2p, while the same computation was com-

pleted in ~33 min when using 10 processors. The number

of MCMC iterations per minute completed by the serial

IMa2 program was also nearly identical to that com-

pleted by the parallelized IMa2p program using a single

processor (see Fig. 2).

Departure from linearity under high maximal migration
rates

We expect a greater departure from a linear relationship

between computational time (here measured as total

number of MCMC iterations per minute) and the num-

ber of processors under models with a high variance

among processors in computational time, because of the

increased waiting time for synchronization. In other

words, synchronization costs would be expected to be

greater during the ‘global’ exchange routines of the

IMa2p algorithm (where data pertaining to mixing and

convergence are collated onto the head node). We

observe a greater cost of synchronization, as a departure

from a linear relationship between iterations per minute

and number of processors, for a model designed to have

a high variance among loci in computation time (see

0 5 10 15 20

0
50

00
10

 0
00

15
 0

00

Processors

Ite
ra

tio
ns

 p
er

 M
in

ut
e

(5
 lo

ci
)

0 5 10 15 20

0
50

0
10

00
15

00

Processors

Ite
ra

tio
ns

 p
er

 m
in

ut
e

(5
0

lo
ci

)

0 5 10 15 20

0
50

10
0

15
0

Processors

Ite
ra

tio
ns

 p
er

 m
in

ut
e

(3
00

 lo
ci

)
(a)

(b)

(c)

Fig. 1 Computation speeds measured in mean number of

MCMC iterations per minute (over five replicates), versus num-

ber of processors. Error bars across replicate runs of IMa2p on

the same data set with different random number seeds are

shown over 95% confidence intervals, ignoring negligible stan-

dard errors (<0.001). Panels a, b and c show results computed

for 5 loci, 50 loci and 300 loci data, respectively.

© 2015 John Wiley & Sons Ltd

4 A. SETHURAMAN and J . HEY

Fig. 3). This figure also reveals a higher variance in itera-

tions per minute, as measured across replicate runs, with

higher maximal migration rates, which is also consistent

with a higher variance among chains within runs.

Equality of distributions for varying number of
processors

Estimates of marginal posterior density distributions of

all parameters were visibly consistent across separate

MCMC runs across 1–20 processors, while maintaining

the same number of chains (Figs 4 and 5). Kolmogorov–
Smirnov (KS) tests (after Bonferroni correction for multi-

ple tests) show congruence of all cumulative posterior

density distributions (P = 1.0) of population sizes, diver-

gence times and migration rates. Similarly, estimates of

parameters obtained by IMa2p for the data of Won &

Hey (2005) by varying the number of processors used

were not distinguishable from those reported by Won &

Hey (2005) (see Table A1).

Discussion

IMa2 and its precursors can be slow to converge on the

target density and sometimes require lengthy runtimes,

particularly with larger data sets. To shorten the time

required for analyses, we have implemented a

parallelized version of IMa2. For a wide range of data set

sizes, we show that there is a considerable speed-up in

computation achieved with increasing the number of

processors (Figs 1 and 2). For the larger data sets, when

parallelization is most needed, the number of MCMC

updates increases nearly linearly with the number of

processors.

The observation of a nearly linear relationship with lar-

ger sample sizes was also observed by Altekar et al. (2004)

in their analyses of Leviviridae (small data set), and Astrag-

alus (large data set). In smaller data sets, the computation

time for the likelihood is less and so the wait times for

swapping is relatively larger, particularly as the number of

processors is increased. As the number of processors

increases, the number of swaps per processor decreases,

increasing the variance in the total number of swaps per

processor, leading to longer wait times. In effect, there is a

larger communication-to-computation time ratio for smal-

ler data sets and large numbers of processors.

For data sets and models that introduce a wide vari-

ance in computation time among chains, we observed a

greater departure from a linear increase in the update

rate, and thus a reduced benefit of having additional

processors (Fig. 3). However, the conditions used to

generate this observation were those expected to gener-

ate a very large variance in numbers of migration

events in the genealogies being simulated. For analyses

with low upper bounds on the migration rate, or for

data sets that dominate the prior distributions, this

should not be an issue. Users of the program who

0 2 4 6 8 10

0
50

 0
00

10
0

00
0

15
0

00
0

20
0

00
0

Processors

Ite
ra

tio
ns

 p
er

 m
in

ut
e

Fig. 2 Number of processors versus total number of updates of

MCMC (number of iterations 9 number of chains) per minute.

Error bars are show over five replicate runs of IMa2p on 47

genomic loci, obtained from Won & Hey (2005). The square

point also indicates iterations per minute from five replicate

runs of IMa2 on a single processor. These coincide with itera-

tions per minute measured using 1 processor with the parallel-

ized IMa2p.

0 2 4 6 8 10

0.
0e

+0
0

5.
0e

+0
6

1.
0e

+0
7

1.
5e

+0
7

Number of processors (or chains)

Ite
ra

tio
ns

 p
er

 m
in

ut
e

Prior m = 1
Prior m = 10
Prior m = 100

Fig. 3 Number of chains (also number of processors here) ver-

sus total number of updates of MCMC (number of iterations x

number of chains) per minute. Error bars are shown over 5 repli-

cate runs over the same single locus data set comprising 50 gene

copies (individuals) sampled from one of two populations.

© 2015 John Wiley & Sons Ltd

IMA2P PARALLEL IM MODEL INFERENCE 5

desire a largely uninformative prior on migration rate,

and who are working with data that show some evi-

dence of divergence, should avoid having high upper

bounds (e.g. such that the maximum population migra-

tion rate is substantially >1) particularly for smaller data

sets.

In our analyses, we considered including up to 20

processors, and it is possible that additional processors

may show a reduced additional benefit. Feng et al.

(2003), for instance, in their analysis of speedups in P

(MC)3 algorithms in Bayesian phylogenetics note that

linear speedups can be achieved using up to 28 proces-

sors. This trade-off has been previously attributed to the

computational burden of interprocessor communications

that is inherent to the MPI framework itself (see Altekar

et al. (2004)). Optimizing the number of MPI communica-

tions between processors could offer a possible solution

to this, as explored by Feng et al. (2006). Related to this is

the computational overhead in swapping across proces-

sors when only one chain is run per processor, which

results in greater computational time for MPI communi-

cation than with distributing swaps between and within

processors, that is performing Metropolis coupling with

>1 chain per processor. Users are advised to distribute

more than 1 chain per processor when running IMa2p in

parallel.

0 10 20 30 40 50

0.
00

0.
05

0.
10

0.
15

0.
20

q0 estimate

Fr
eq

ue
nc

y

Processors
1
2
4
5
10
20

0 10 20 30 40 50

0.
0

0.
1

0.
2

0.
3

q1 estimate

Fr
eq

ue
nc

y

Processors
1
2
4
5
10
20

0 10 20 30 40 50

0.
00

0.
02

0.
04

0.
06

0.
08

q2 estimate

Fr
eq

ue
nc

y

Processors
1
2
4
5
10
20

0 2 4 6 8 10

0.
0

0.
1

0.
2

0.
3

0.
4

m0−>1 estimate

Fr
eq

ue
nc

y
Processors

1
2
4
5
10
20

(a) (b)

(c) (d)

Fig. 4 Posterior density histograms of parameters (q0 (a), q1 (b), q2 (c) are mutation scaled population sizes, m0?1 (d) is the mutation

scaled migration rate from population 0 to population 1).

© 2015 John Wiley & Sons Ltd

6 A. SETHURAMAN and J . HEY

Acknowledgements

This research was supported by NIH Grant: R01GM078204 to

Jody Hey. We thank Bryan Carstens, three anonymous review-

ers and members of the Hey laboratory and the CCGG for their

inputs on early versions of the manuscript and tool.

References

Altekar G, Dwarkadas S, Huelsenbeck JP, Ronquist F (2004) Parallel

metropolis coupled Markov Chain Monte Carlo for Bayesian phyloge-

netic inference. Bioinformatics, 242, 407–415.

Felsenstein J (1988) Phylogenies from molecular sequences: inference and

reliability. Annual Review of Genetics, 22, 521–565.

Feng X, Buell DA, Rose JR, Waddell PJ (2003) Parallel algorithms for

Bayesian phylogenetic inference. Journal of Parallel and Distributed Com-

puting, 63, 707–718.

Feng X, Cameron KW, Buell DA (2006) Pbpi: a high performance imple-

mentation of bayesian phylogenetic inference. In Proceedings of the 2006

ACM/IEEE Conference on Supercomputing, 75, ACM.

Geyer CJ (1991) Markov chain Monte Carlo maximum likelihood.

Hansmann UH (1997) Parallel tempering algorithm for conformational

studies of biological molecules. Chemical Physics Letters, 281, 140–150.

Hey J, Nielsen R (2007) Integration within the Felsenstein equation for

improved Markov Chain Monte Carlo methods in population genetics.

Proceedings of the National Academy of Sciences, 104, 2785–2790.

Hudson RR (2002) Generating samples under a Wright-Fisher neutral

model of genetic variation. Bioinformatics, 18, 337–338.

Kimura K Taki K, (1991) Time-homogeneous parallel annealing algo-

rithm. In: Proceedings of the 13th IMACS World Congress on Computation

and Applied Mathematics (IMACS’91) (eds Vichnevetsky R, Miller JJH),

2, pp. 827–828.

Nielsen R, Wakeley J (2001) Distinguishing migration from isolation: a

Markov Chain Monte Carlo approach. Genetics, 158, 885–896.

Swendsen RH, Wang JS (1986) Replica Monte Carlo simulation of spin-

glasses. Physical Review Letters, 57, 2607.

Wakeley J, Hey J (1998) Testing speciation models with DNA sequence

data. In: Molecular Approaches to Ecology (eds DeSalle R, Schierwater B),

pp. 157–175. Birkh€auser-Verlag, Basel.

Won YJ, Hey J (2005) Divergence population genetics of chimpanzees.

Molecular Biology and Evolution, 22, 297–307.

Yu N, Jensen-Seaman MI, Chemnick L, et al. (2003) Low nucleotide diver-

sity in chimpanzees and bonobos. Genetics, 164, 1511–1518.

J.H. conceived the project. A.S. and J.H. designed the

study. AS designed and wrote the IMa2p program based

on the existing IMa2 code and carried out the analyses.

Data Accessibility

IMa2p uses OpenMPI and C++, and the source code, and

simulated IMa2p input files from this manuscript can be

downloaded from https://bio.cst.temple.edu/~hey/

software/software.htm or www.github.com/arun-

sethuraman/ima2p. IMa2p was beta tested using the

same standard testing modules as IMa2. Other function-

ality added to IMa2p that are different from the previous

version includes (i) reloading of results of parallel runs

to restart M mode/L mode runs, (ii) reporting autocorre-

lations and swap rates across processors, (iii) combining

genealogies saved on different processors (as the cold or

sampling chain can move around), (iv) option to swap

entire chain state during swaps within a processor, as

against swapping only temperatures. Instructions on

compiling using OpenMPI and running the software in

parallel are described in the user manual that can be

accessed inside the code repository. For further details

on IMa2, please see:https://bio.cst.temple.edu/~hey/

program_files/IMa2/Using_IMa2_8_24_2011.pdf.

Sequence data from Won & Hey (2005) are available on

GenBank under Accession nos AY275957 to AY277244 and

AY463943 to AY463951.

0 2 4 6 8 10

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

m1−>0 estimate

Fr
eq

ue
nc

y

Processors
1
2
4
5
10
20

0 2 4 6 8 10

0.
00

0.
02

0.
04

0.
06

0.
08

0.
10

0.
12

t0 estimate

Fr
eq

ue
nc

y

Processors
1
2
4
5
10
20

(a)

(b)

Fig. 5 Posterior density histograms of parameters (m1?0 (a) is

the mutation scaled migration rate from population 1 to popula-

tion 0, and t0 (b) is the divergence time (number of genera-

tions 9 mutation rate) between populations 0 and 1).

© 2015 John Wiley & Sons Ltd

IMA2P PARALLEL IM MODEL INFERENCE 7

https://bio.cst.temple.edu/~hey/software/software.htm
https://bio.cst.temple.edu/~hey/software/software.htm
www.github.com/arunsethuraman/ima2p
www.github.com/arunsethuraman/ima2p
https://bio.cst.temple.edu/~hey/program_files/IMa2/Using_IMa2_8_24_2011.pdf
https://bio.cst.temple.edu/~hey/program_files/IMa2/Using_IMa2_8_24_2011.pdf
http://www.ncbi.nlm.nih.gov/nuccore/AY275957
http://www.ncbi.nlm.nih.gov/nuccore/AY277244
http://www.ncbi.nlm.nih.gov/nuccore/AY463943
http://www.ncbi.nlm.nih.gov/nuccore/AY463951

Appendix 1

Algorithm 1: P(MC)3 algorithm

© 2015 John Wiley & Sons Ltd

8 A. SETHURAMAN and J . HEY

Algorithm 2: P(MC)3 swap counting algorithm

Algorithm 3: P(MC)3 autocorrelations algorithm

© 2015 John Wiley & Sons Ltd

IMA2P PARALLEL IM MODEL INFERENCE 9

1. Data simulations

Multilocus genotype (SNP) data was simulated using ms

(Hudson 2002) under the isolation with migration model

using the following command lines for Simulations 1, 2

and 3, respectively. Sequence data was then generated

using a Jukes Cantor model of nucleotide substitution,

where each base is equally likely to mutate into any other

base. Lengths of sequence alignments were varied across

loci and replicates.

(1) ms 30 5/50/300 –t 5 –I 2 15 15 –n 1 1.0 –n 2 1 –m 1 2 5

–m 2 1 5 –en 0.002 1 1 –ej 0.002 2 1

(2) ms 100 1 t 5 –I 2 50 50 –n 1 1.0 –n 2 1 –m 1 2 5 –m 2 1

5 –en 0.2 1 1 –ej 0.2 2 1

(3) ms 30 2 –t 5 –I 2 15 15 –n 1 1.0 –n 2 1 –m 1 2 2 –m 2 1

2 –en 0.2 1 1 –ej 0.2 2 1

All simulated IMa2p input files can be downloaded

from the git repository under “Simulations”.

Runs of IMa2p for Simulation 1 were then performed

by setting prior limits on parameters as instructed in the

IMa2 (Hey & Nielsen 2007) user manual. In short, Watt-

erson’s estimates of the population mutation rate, h =
4Nu, were computed based on the number of segregat-

ing sites at each locus. The geometric mean (x) of each

estimate was computed, then the upper bound on h was

set to 5x, the splitting time upper bound was set to 2x,

and the migration rate upper bound was set to 2/x. For

details on this rule of thumb, see Hey & Nielsen 2007.

The random number seed was varied across replicate

runs (using the –s flag). The IMa2p command line used

in each run is shown below:

Simulation 1

IMa2p –i Sim1_5loci.u –o Sim1_5loci.out –q2 –m1 –t3 –
hfg –hn60 –ha0.98 –hb0.75 –r245 –b10000 –l100
IMa2p –i Sim1_50loci.u –o Sim1_50loci.out –q27.49 –
m0.36 –t10.99 –hfg –hn60 –ha0.98 –hb0.75 –r245 –b10000
–l100
IMa2p –i Sim1_300loci.u –o Sim1_300loci.out –q48.57 –
m0.21 –t19.43 –hfg –hn60 –ha0.98 –hb0.75 –r245 –b10000
–l100

Simulation 2

IMa2p –i Sim2.u –o Sim2.out –c0 –q50 –m1 –t20 –hfg –
hn5 –ha0.9 –hb0.8 –b100000 –l0.5 –r245
IMa2p –i Sim2.u –o Sim2.out –c0 –q50 –m10 –t20 –hfg –
hn5 –ha0.9 –hb0.8 –b100000 –l0.5 –r245
IMa2p –i Sim2.u –o Sim2.out –c0 –q50 –m100 –t20 –hfg –
hn5 –ha0.9 –hb0.8 –b100000 –l0.5 –r245

Simulation 3

IMa2p –i Sim3.u –o Sim3.out –q50 –m10 –t10 –s123 –hfg
–hn20 –ha0.97 –hb0.5 –b100000 –l200000

2. Empirical data

Won & Hey (2005) used a data set from 26 primates (Yu

et al. 2003), comprising genomic DNA sequences across 50

loci, of varying lengths (~480 bp long on average) to infer

ancestral demography under the IM model. Parallel runs

using IMa2p were performed using the same limits on

priors for population sizes, divergence time and migration

rates as described in Won & Hey (2005). M mode runs

comprised a total of 30 chains distributed across 1–10 pro-

cessors, and a burn-in period of 100 000 iterations, and

1000 genealogies were saved at every 100th iteration post

burn-in (total of 200,000 MCMC iterations).

M mode

IMa2p –i wonhey.u –o wonhey.out –b100000 –L1000 –
hn30 –ha0.97 –hb0.9 –hfg –q4 –m5 –t1 –p356 –s1234

L mode

IMa2p –i wonhey.u –o wonhey.out –r0 1000 –v won-

hey.out –q4 –m5 –t1 –p245

Table A1 Mean parameter estimates of population sizes (q),

migration rates (m) and divergence time (t) between P. t. troglo-

dytes and P. t. verus, using 47 genomic loci from Won & Hey

(2005), estimated by varying the number of processors in IMa2p.

Also shown are comparable estimates reported in Table 1 of

Won & Hey (2005) using the serial (single processor) version of

IMa2

Processors q0 q1 q2 m0?1 m1?0 t

1 0.76 0.21 0.06 1.736* 0.013ns 0.15

2 0.76 0.19 0.10 1.528* 0.00ns 0.12

3 0.88 0.22 0.15 1.539* 0.381ns 0.18

5 0.73 0.20 0.21 1.378* 0.00ns 0.13

6 0.86 0.23 0.10 1.143* 0.163ns 0.19

10 0.82 0.21 0.05 1.133* 0.114ns 0.23

MLE

(Won &

Hey 2005)

0.87 0.24 0.16 1.179* 0.002ns 0.22

Lower 90% HPD 0.61 0.16 0.00 0.314 0.002 0.13

Higher 90% HPD 1.27 0.33 0.35 2.541 1.226 0.33

*Indicates statistical significance at a P-value of 0.05 in an LLR

test of migration. For details of the LLR test, see Nielsen &

Wakeley (2001).

© 2015 John Wiley & Sons Ltd

10 A. SETHURAMAN and J . HEY

